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Abstract 
In this paper a novel approach is described to perform detection 
of Cancer Tissues by directly modeling the statistical 
characteristics of the Cancer Cells. This approach allows us to 
represent Cancer Tissue Acquisitions in the form of pattern that 
will be analyzed and monitored using Adaptive Self Organizing 
Maps and Mathematical framework of Cancer Random Tissue 
Distributions and Localization of Cancer Cells.MRI Images are 
stacked and pattern recognition techniques are applied to 
determine Cancer Tissue Image Segmentation and Registration.  
Keywords: Neural Networks, Cancer Tissue, Random 
Multi-Variable, Statistical Modeling. 
 
1. Introduction 
 
  
Growth of Cancer patients is increasing and many patients 
diagnosed with Cancer at a Late Stage. So there is a high 
requirement of innovation in the field of Early Cancer 
Detection. Cancer Screening can help to find the cancer in 
early stage of development and there are more chances 
better treatment results. However, some of the cancer 
types still don’t have screening test available and few 
populations with certain genetic code. 
 Cancer is a disease in which abnormal cells start 
dividing and there is no immunity defense to control the 
cell division and more likely invade other connected 
tissue structure. Cancer cells can distribution in random 
order through blood stream and lymph systems. There are 
more than 100 different types of cancer.  
 
 Requirements engineering is an attempt to define a 
discipline for the management of requirements across the 
system development life cycle. In particular, the 
discipline addresses the stages preceding the better 
understood, downstream activities of detailed design, 
implementation, testing, and maintenance, for which there 

exist reasonably formal engineering practices and 
procedures often supported by computer tools. 
    At the front end of the life cycle, the task is to 
understand the customer’s requirements. Most 
requirements begin as natural language statements 
embedded within formal project specification documents, 
often hundreds of pages in length. These documents 
normally represent the unresolved views of a group of 
individuals and will, in most cases be fragmentary, 
inconsistent, and contradictory, seldom be prioritized and 
often be overstated, beyond actual needs. There is very 
little in the way of formal process and tool support in this 
area. This is unfortunate, as the front end tasks represent 
the key leverage points in the entire design and 
development process. Mistakes and misunderstandings at 
this stage may result in enormous economic and technical 
problems later on in the life cycle. 
 
2. Statistical modeling of Joint Cumulant 
 
The Independence among signals means there is no 
statistical dependence among them. For the 2nd order 
statistics with Gaussian random variables, independence 
means their mutual correlation is zero. For higher order 
statistics, the dependence is judged by joint cumulant, 
which means their mutual joint cumulants are zero. 
Generally speaking, we deal with non-Gaussian random 
variables. So it is necessary to consider higher order 
statistics for independence [6-11]. 
For a set of n real random variable {x1, x2, …, xn}, their 
joint moment of order r = k1 + k2 + … + kn are given by 
Papoulis [2]:  
 

 
where 
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 is there joint characteristic function. 
Another form of joint characteristic function is defined as 
the natural logarithm of 

 
Joint cumulants can be defined as the coefficients in the 
Taylor series expansion of the above characteristic 
function about zero: 

 
The general relationship between moments of {x1, x2, …, 
xn} and joint cumulants Cum[x1, x2, …,Xn] of order r = 
n is given by Rosenblatt [3]: 

 
where the summation extends over all partitions (s1, s2, 
…, sp), p = 1, 2, …, n, of 
the set of integers (1, 2, …, n). 
From statistical point of view, for a set of n real random 
variable {x1, x2, …, xn}, if their mutual joint cumulants 
up to order n are all zero, then, they can be claimed 
independent. For calculation simplicity, we consider only 
the 3rd and 4th orders. We define a penalty function P, 

 
 
Separation matrix W can be obtain by minimizing P with 

regard to W. W is  where w1 
through wn are row vectors. Gradient decent method is 
used in experiments. Independent   components are 
extracted one by one. When extracting j-th component xj, 
joint cumulants are calculated for all i and j combination 
with i < j. We first assume input signals Y be whitened, 
i.e. zero mean, unit variance. For non-whitened signals, 
simply do a PCA whitening. Consider the 1st component. 
It can be extracted by maximizing its fourth order 
cumulant, kurtosis [1], and the separating function is, 

 
 
For the j-th component, j>1 

 
 
and 

 
To extract the j-th component, j > 1, we need to calculate 
3*j –3 terms of joint cumulants. 
 
We consider the following software engineering 
model field equations defined over an open 
bounded piece of network and /or feature space 

dRΩ ⊂ . They describe the dynamics of the 
mean Software models of each of p node 
populations. 

|
1

( ) ( , ) ( , ) [( ( ( , ), ) )]

(1)
( , ), 0,1 ,

( , ) ( , ) [ ,0]

p

i i ij j ij j
j

ext
i

i i

d
l V t r J r r S V t r r r h dr

dt

I r t t i p

V t r t r t T

τ

φ

Ω
=


+ = − −




+ ≥ ≤ ≤
 = ∈ −

∑∫

  
 
We give an interpretation of the various 
parameters and functions that appear in (1),Ω  is 
finite piece of nodes and/or feature space and is 
represented as an open bounded set of dR . The 
vector r  and r  represent points in  Ω . The 
function : (0,1)S R→  is the normalized 
sigmoid function: 
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1

( ) (2)
1 z

S z
e−=

+
  

It describes the relation between the input 
software model rate iv  of population i  as a 

function of the software requirement potential, 
for example, [ ( )].i i i i iV v S V hσ= = −  We note V  

the p −  dimensional vector 1( ,..., ).pV V The p  

function , 1,..., ,i i pφ =  represent the initial 

conditions, see below. We note φ  the  p −  

dimensional vector 1( ,..., ).pφ φ  The p  function 

, 1,..., ,ext
iI i p=  represent external factors from 

other network areas. We note extI  the p −  

dimensional vector 1( ,..., ).ext ext
pI I The p p×  

matrix of functions , 1,...,{ }ij i j pJ J ==  represents 

the connectivity between populations i  and ,j  

see below. The p  real values , 1,..., ,ih i p=  

determine the threshold of activity for each 
population, that is, the value of the nodes 
potential corresponding to 50% of the maximal 
activity. The p real positive values 

, 1,..., ,i i pσ =  determine the slopes of the 

sigmoids at the origin. Finally the p real 

positive values , 1,..., ,il i p=   determine the 
speed at which each requirement node potential 
decreases exponentially toward its real value. 
We also introduce the function : ,p pS R R→  
defined by 
 1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S hσ σ= − −  and the 

diagonal p p×  matrix 0 1( ,..., ).pL diag l l= Is the 

intrinsic dynamics of the software requirement 
model population given by the linear response 
of functional and non functional requirement 

design pattern. ( )i

d
l

dt
+  is replaced by 2( )i

d
l

dt
+  

to use the alpha function response. We use 

( )i

d
l

dt
+  for simplicity although our analysis 

applies to more general intrinsic software moule 
requirement dynamics. For the sake, of 

generality, the propagation delays are not 
assumed to be identical for all populations, 
hence they are described by a matrix ( , )r rτ  

whose element ( , )ij r rτ is the propagation delay 

between population j  at r  and population i  at 
.r  The reason for this assumption is that it is 

still unclear from business requirements if 
propagation delays are independent of the 
populations. We assume for technical reasons 

that τ  is continuous, that is 
20( , ).p pC Rτ ×

+∈ Ω  

Moreover software data indicate that τ  is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r rτ τ≠  thus 

no assumption is made about this symmetry 
unless otherwise stated. In order to compute the 
right-hand side of (1), we need to know the node 
potential factor V  on interval [ ,0].T−  The 
value of T  is obtained by considering the 
maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r rτ τ
∈Ω×Ω

=   

Hence we choose mT τ=  

 

A. Software Requirement Mathematical Framework 

A convenient functional setting for the non-
delayed software requirement model field 
equations is to use the space 2( , )pF L R= Ω  
which is a Hilbert space endowed with the usual 
inner product: 

 
1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr
Ω

=

=∑∫   

To give a meaning to (1), we defined the history 
space 0([ ,0], )mC C Fτ= −  with 

[ ,0]sup ( ) ,
mt t Fτφ φ∈ −=  which is the Banach 

phase space associated with equation (3). Using 
the notation ( ) ( ), [ ,0],t mV V tθ θ θ τ= + ∈ −  we 

write (1) as  
.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext
tV t L V t L S V I t

V Cφ

 = − + +


= ∈

  

Where  
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1 : ,

(., ) ( , (., ))

L C F

J r r r d rφ φ τ
Ω

→
 → − ∫

  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J ×Ω
≤  Notice that most of the 

papers on this subject assume Ω  infinite, hence 
requiring .mτ = ∞    

 
 
Proposition 1.0  If the following software 
requirement model assumptions are satisfied. 

1. 
2 2( , ),p pJ L R ×∈ Ω   

2. The external current 
0( , ),extI C R F∈   

3. 
2

0 2( , ),sup .p p
mC Rτ τ τ×

+ Ω
∈ Ω ≤   

Then for any ,Cφ ∈  there exists a unique 

solution 1 0([0, ), ) ([ , , )mV C F C Fτ∈ ∞ ∩ − ∞  to 
(3) 
Notice that this result gives existence on ,R+  

finite-time explosion is impossible for this 
delayed differential equation. Nevertheless, a 
particular solution could grow indefinitely, we 
now prove that this cannot happen. 
 

B. Boundedness of Solutions 

A valid model of software neural networks 
requirement model should only feature bounded 
software node potentials.  
 
Theorem 1.0 All the software integration model 
trajectories are ultimately bounded by the same 

constant R  if max ( ) .ext

t R F
I I t+∈

≡ < ∞   

Proof :Let us defined :f R C R+× →  as 
2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V LV LS V I t V t

dt
= − + + =   

We note 1,...mini p il l==   

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t≤ − + Ω +   

Thus,  if 

 
2.

( ) 2 , ( , ) 0
2

def def
F

tF

p J I lR
V t R f t V

l
δ

Ω +
≥ = ≤ − =− <   

 

Let us show that the open data route of F  of 
center 0 and radius , ,RR B  is stable under the 

dynamics of equation. We know that ( )V t  is 

defined for all 0t s≥  and that 0f <  on ,RB∂  

the boundary of RB . We consider three cases for 

the initial condition 0.V If 0 C
V R<  and set 

sup{ | [0, ], ( ) }.RT t s t V s B= ∀ ∈ ∈  Suppose that 

,T R∈  then ( )V T  is defined and belongs to 

,RB  the closure of ,RB  because  RB is closed, in 

effect to ,RB∂  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
δ= = ≤ − <  because 

( ) .RV T B∈∂  Thus we deduce that for 0ε >  and 

small enough, ( ) RV T Bε+ ∈  which contradicts 

the definition of T. Thus T R∉  and RB is 

stable.  
 
 Because f<0 on , (0)R RB V B∂ ∈∂  implies 

that 0, ( ) Rt V t B∀ > ∈ . Finally we consider the 

case (0) RV CB∈ . Suppose that   

0, ( ) ,Rt V t B∀ > ∉  then 
2

0, 2 ,
F

d
t V

dt
δ∀ > ≤ −  

thus ( )
F

V t  is monotonically decreasing and 

reaches the value of R in finite time when ( )V t  

reaches .RB∂  This contradicts our assumption.  

Thus  0 | ( ) .RT V T B∃ > ∈   
 

Proposition 1.1 : Let s  and t   be measured 

software requirement functions on .X  for 
,E Mε  define 

 

( ) (1)
E

E s dφ µ= ∫   
Then φ  is a measure on M .  
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( ) (2)
X X X

s t d s d tdµ µ µ+ = +∫ ∫ ∫   
Proof : If s  and if 1 2, ,...E E  are disjoint 

members of M whose union is ,E  the countable 
additivity of µ  shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r
i i r

n

i i r r
r i r

E A E A E

A E E

φ α µ α µ

α µ φ

∞

= = =
∞ ∞

= = =

= ∩ = ∩

= ∩ =

∑ ∑ ∑

∑∑ ∑
  

Also, ( ) 0,ϕ φ =  so that ϕ  is not identically∞ . 
Next, let  s  be as before, let 1,..., mβ β  be the 

distinct values of t, and let { : ( ) }j jB x t x β= =  if 

,ij i jE A B= ∩  the ( ) ( ) ( )
ij

i j ijE
s t d Eµ α β µ+ = +∫  

 
and ( ) ( )

ij ij
i ij j ijE E

sd td E Eµ µ α µ β µ+ = +∫ ∫   

Thus (2) holds with ijE  in place of X . Since X

is the disjoint union of the sets 
(1 ,1 ),ijE i n j m≤ ≤ ≤ ≤  the first half of our 

proposition implies that (2) holds. 
 
 
Theorem 1.1: If K  is a compact set in the plane 
whose complement is connected, if f  is a 
continuous complex function on K  which is 
holomorphic in the interior of , and if 0,ε >  
then there exists a polynomial P  such that 

( ) ( )f z P z ε= <  for all z Kε .  If the 

interior of K is empty, then part of the 
hypothesis is vacuously satisfied, and the 
conclusion holds for every ( )f C Kε . Note that  
K need to be connected. 
Proof: By Tietze’s theorem, f  can be extended 
to a continuous function in the plane, with 
compact support. We fix one such extension and 
denote it again byf . For any 0,δ >  let ( )ω δ  

be the supremum of the numbers 2 1( ) ( )f z f z−  

Where 1z  and 2z  are subject to the condition

2 1z z δ− ≤ . Since f  is uniformly continous, 

we have 
0

lim ( ) 0 (1)
δ

ω δ
→

=   

From now on, δ  will be fixed. We shall prove 
that there is a software module API calls 
polynomial P  such that  
  
 ( ) ( ) 10,000 ( ) ( ) (2)f z P z z Kω δ ε− <   

By (1),   this proves the theorem. Our first 
objective is the construction of a function 

' 2( ),cC RεΦ  such that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

ω δ
ω δ
δ

− Φ ≤

∂Φ <
  

And 
1 ( )( )

( ) ( ), (5)
X

z d d i
z

ζ ζ η ζ ξ η
π ζ

∂ΦΦ = − = +
−∫∫   

Where X  is the set of all points in the support 
of Φ  whose distance from the software runtime 
parameter and dynamic software object binding 
complement of K  does not δ . (Thus  X
contains no point which is “far within” K .) We 
construct Φ as the convolution of f  with a 
smoothing function A. Put ( ) 0a r =  if ,r δ> put  
 

2
2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r δ

πδ δ
= − ≤ ≤

  
And define 

( ) ( ) (7)A z a z=
  

For all complex z . It is clear that ' 2( )cA C Rε . 

We claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
δ δ

=

∂ =

∂ = <

∫∫

∫∫

∫∫

    

 

The constants are so adjusted in (6) that (8) 
holds.  (Compute the integral in polar 
coordinates), (9) holds simply because A  has 



International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012 
ISSN (Online): 2319-6564 
www.ijesonline.com 

IJESPR 
www.ijesonline.com 

138 
 

compact support. To compute (10), express A∂  

in polar coordinates, and note that 0,A
θ

∂ =∂   

 
',A ar

∂ = −∂  
Now define 

2 2

( ) ( ) ( ) ( ) (11)
R R

z f z Ad d A z f d dζ ξ η ζ ζ ξ ηΦ = − = −∫∫ ∫∫
  

Since f  and A  have compact support, so does
Φ . Since  
 

2

( ) ( )

[ ( ) ( )] ( ) (12)
R

z f z

f z f z A d dζ ξ ξ η

Φ −

= − −∫∫  

And ( ) 0A ζ =  if ,ζ δ>   (3) follows from (8). 

The difference quotients of A  converge 
boundedly to the corresponding software 
abstract layer partial derivatives, since 

' 2( )cA C Rε . Hence the last expression in (11) 

may be differentiated under the integral sign, 
and we obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

ζ ζ ξ η

ζ ζ ξ η

ζ ζ ξ η

∂Φ = ∂ −

= − ∂

= − − ∂

∫∫

∫∫

∫∫
   
The last equality depends on (9). Now (10) and 
(13) give (4). If we write (13) with xΦ  and yΦ  

in place of ,∂Φ  we see that Φ  has continuous 
partial derivatives, if we can show that 0∂Φ =  
in ,G  where G  is the set of all z Kε  whose 
distance from the complement of K  exceeds .δ  
We shall do this by showing that  
 ( ) ( ) ( ); (14)z f z z GεΦ =   
Note that 0f∂ =  in G , since f  is holomorphic 
there. Now if ,z Gε  then z ζ−  is in the interior 

of K  for all ζ  with .ζ δ<  The mean value 

property for harmonic functions therefore gives, 
by the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

δ π θ

δ

θ

π

Φ = −

= = =

∫ ∫

∫ ∫∫
  
For all z Gε  , we have now proved (3), (4), 
and (5) The definition of X  shows that X is 
compact and that X  can be covered by finitely 
many open discs 1,..., ,nD D  of radius 2 ,δ  

whose centers are not in .K  Since 2S K−  is 
connected, the center of each jD  can be joined 

to ∞  by a polygonal path in 2S K− . It follows 
that each jD contains a compact connected set 

,jE  of diameter at least 2 ,δ  so that 2
jS E−  is 

connected and so that .jK E φ∩ =   with 2r δ= . 

There are functions 2( )j jg H S Eε −  and 

constants jb  so that the inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z

ζ
δ

δζ
ζ ζ

<

− <
− −

   

Hold for jz E∉  and ,jDζ ∈  if  
2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g zζ ζ= + −   

Let Ω  be the complement of 1 ... .nE E∪ ∪  Then 

Ω is an open set which contains .K  Put 

1 1X X D= ∩  and 

1 1( ) ( ... ),j j jX X D X X −= ∩ − ∪ ∪  for 2 ,j n≤ ≤   

Define  
( , ) ( , ) ( , ) (19)j jR z Q z X zζ ζ ζε ε= Ω   

And 
1

( ) ( ) ( ) ( , ) ( 2 0 )

( )
X

F z R z d d

z

ζ ζ ζ η
π

ε

= ∂ Φ

Ω

∫∫   

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j
j X

F z Q z d dζ ζ ξ η
π=

= ∂Φ∑ ∫∫   



International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012 
ISSN (Online): 2319-6564 
www.ijesonline.com 

IJESPR 
www.ijesonline.com 

139 
 

(18) shows that F  is a Software Quality of 
Service (QoS) finite linear combination of the 
functions jg  and 2

jg . Hence ( ).F Hε Ω  By (20), 

(4), and (5) we have  
2 ( )

( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

ω δ ζ
πδ

ξ η ε
ζ

− Φ <

− Ω
−

∫∫
  

Observe that the inequalities (16) and (17) are 
valid with R  in place of jQ  if Xζ ε  and 

.z ε Ω now fix .z ε Ω , put ,iz eθζ ρ= +  and 
estimate the integrand in (22) by (16) if 4 ,ρ δ<  
by (17) if 4 .δ ρ≤   The integral in (22) is then 
seen to be less than the sum of 

4

0

50 1
2 808 (23)d

δ
π ρ ρ πδ

δ ρ
 + = 
 

∫   

And  
2

24

4,000
2 2,000 . (24)d

δ

δπ ρ ρ πδ
ρ

∞
=∫   

Hence (22) yields 
( ) ( ) 6,000 ( ) ( ) (25)F z z zω δ ε− Φ < Ω

  
Since ( ), ,F H Kε Ω ⊂ Ω  and 2S K−  is 
connected, Runge’s theorem shows that F  can 
be uniformly approximated on K  by 
polynomials. Hence (3) and (25) show that (2) 
can be satisfied. This completes the proof. 
 
Lemma 1.0: Suppose software model 
requirement ' 2( ),cf C Rε  the space of all 

continuously differentiable functions in the 
plane, with compact support. Put  

1
(1)

2
i

x y

 ∂ ∂∂ = + ∂ ∂ 
  

Then the following “Cauchy formula” holds: 

2

1 ( )( )
( )

( ) (2)
R

f
f z d d

z

i

ζ ξ η
π ζ

ζ ξ η

∂= −
−

= +

∫∫   

Proof: This may be deduced from Green’s 
theorem. However, here is a simple direct proof: 
Put ( , ) ( ), 0,ir f z re rθϕ θ θ= + >  real 

 If ,iz reθζ = +  the chain rule gives 

1
( )( ) ( , ) (3)

2
i i

f e r
r r

θζ ϕ θ
θ

∂ ∂ ∂ = + ∂ ∂ 
  

The right side of (2) is therefore equal to the 
limit, as 0,ε →  of 

 
2

0

1
(4)

2

i
d dr

r r

π

ε

ϕ ϕ θ
θ

∞ ∂ ∂ − + ∂ ∂ 
∫ ∫

 
 

 
 
For each 0,r ϕ>  is periodic in ,θ  with period 
2π . The integral of /ϕ θ∂ ∂  is therefore 0, and 
(4) becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

π π

ε

ϕθ ϕ ε θ θ
π π

∞ ∂− =
∂∫ ∫ ∫

  
As 0, ( , ) ( )f zε ϕ ε θ→ →  uniformly.  
This gives (2)  
 
If X aα ∈  and [ ]1,... nX k X Xβ ∈ , then 

X X X aα β α β+= ∈  , and so A  satisfies the 
condition ( )∗ . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finitesumsα β α β
α β α β

α α ββ

+

∈ ∈

=∑ ∑ ∑
�

  
and so if A  satisfies ( )∗ , then the subspace 

generated by the monomials ,X aα α ∈ , is an 
ideal. The proposition gives a classification of 
the monomial ideals in [ ]1,... nk X X : they are in 

one to one correspondence with the subsets A 
of n�  satisfying ( )∗ . For example, the 

monomial ideals in [ ]k X  are exactly the ideals 

( ), 1nX n≥ , and the zero ideal (corresponding 

to the empty setA). We write |X Aα α ∈  for 

the ideal corresponding to A  (subspace 
generated by the ,X aα α ∈ ). 
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LEMMA 1.1.  Let S  be a Software non 
functional requirement subset of n� . The ideal 

a  generated by ,X Sα α ∈  is the monomial 
ideal corresponding to   

{ }| ,
df

n nA some Sβ β α α∈ − ∈ ∈= � �   

Thus, a monomial is in a  if and only if it is 
divisible by one of the , |X Sα α ∈  

PROOF.   Clearly A  satisfies ( )∗ , and 

|a X Aβ β⊂ ∈ . Conversely, if Aβ ∈ , then 
nβ α− ∈�  for some Sα ∈ , and 

X X X aβ α β α−= ∈ . The last statement follows 
from the fact that | nX Xα β β α⇔ − ∈� . Let 

nA⊂ �  satisfy( )∗ . From the geometry ofA, it 

is clear that there is a finite set of elements 

{ }1,... sS α α=   of A such that  

{ }2| ,n
i iA some Sβ β α α= ∈ − ∈ ∈� �  (The 

'i sα  are the corners ofA ) Moreover, 

|
df

a X Aα α ∈=  is generated by the monomials

,i
iX Sα α ∈ . 

 
DEFINITION 1.0.   For a nonzero ideal a  in 

[ ]1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

{ }( ) |LT f f a∈   

 
LEMMA 1.2   Let a  be a nonzero ideal in  

[ ]1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a∈ . 

PROOF.   Since  ( ( ))LT a  can also be described 
as the ideal generated by the leading monomials 
(rather than the leading terms) of elements of a . 
 
THEOREM 1.2.  Every ideal a  in 

[ ]1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g=  where 1,..., sg g are any 

elements of a  whose leading terms generate 
( )LT a   

PROOF.   Let f a∈ . On applying the division 
algorithm, we find 

[ ]1 1 1... , , ,...,s s i nf a g a g r a r k X X= + + + ∈  

, where either 0r =  or no monomial occurring 
in it is divisible by any ( )iLT g . But 

i i
r f a g a= − ∈∑ , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g∈ = , implies 

that every monomial occurring in r  is divisible 
by one in ( )iLT g . Thus 0r = , and 

1( ,..., )sg g g∈ . 

 
DEFINITION 1.1.    A finite subset 

{ }1,| ..., sS g g=  of an ideal a  is a standard (
..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a= . In other words, S 

is a standard basis if the leading term of every 
element of a is divisible by at least one of the 
leading terms of the ig . 

 
THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 
 
PROOF. For  1,n =  [ ]k X  is a principal ideal 
domain, which means that every ideal is 
generated by single element. We shall prove the 
theorem by induction on n . Note that the 
obvious map 1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X− →  is 
an isomorphism – this simply says that every 
polynomial f  in n  variables 1,... nX X  can be 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r
n n n r nf X X a X X X a X X− −= + +

  
Thus the next lemma will complete the proof 
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LEMMA 1.3.   If A is Noetherian, then so also 
is [ ]A X   
PROOF.          For a polynomial 
 

1
0 1 0( ) ... , , 0,r r

r if X a X a X a a A a−= + + + ∈ ≠
  
r  is called the degree of f , and 0a  is its 

leading coefficient. We call 0 the leading 
coefficient of the polynomial 0.  Let a  be 
an ideal in [ ]A X . The leading coefficients of 

the polynomials in a  form an ideal 'a  in A ,  
and since A  is Noetherian, 'a will be finitely 
generated. Let 1,..., mg g  be elements of a  

whose leading coefficients generate 'a , and let 
r be the maximum degree of ig . Now let 

,f a∈  and suppose f  has degree s r> , say, 

...sf aX= +  Then 'a a∈  , and so we can write 

, ,i ii

i i

a ba b A

a leading coefficient of g

= ∈

=
∑

  

Now 

, deg( ),is r

i i i if b g X r g
−− =∑ has degree 

deg( )f<  . By continuing in this way, we find 

that 1mod( ,... )t mf f g g≡  With tf  a 

polynomial of degree t r< . For each d r< , let 

da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 
degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial 

df  in a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g−≡  With 1df −  of 

degree 1d≤ − . On applying this remark 
repeatedly we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
−− −∈  Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
−− −∈  

 and so the polynomials 
01 0,,..., mg g  generate a  . 

 
One of the great successes of category theory in 
computer science has been the development of a 
“unified theory” of the constructions underlying 
denotational semantics. In the untyped λ -
calculus,  any term may appear in the function 
position of an application. This means that a 
model D of the λ -calculus must have the 
property that given a term t  whose 
interpretation is ,d D∈  Also, the interpretation 
of a functional abstraction like xλ . x  is most 
conveniently defined as a function from Dto D  
, which must then be regarded as an element of 
D. Let [ ]: D D Dψ → →  be the function that 

picks out elements of D to  represent elements 
of [ ]D D→  and [ ]: D D Dφ → →  be the 

function that maps elements of D to functions of 
D.  Since ( )fψ  is intended to represent the 
function f  as an element of D, it makes sense 
to require that ( ( )) ,f fφ ψ =  that is, 

[ ]D Do idψ ψ →=   Furthermore, we often want to 

view every element of D as representing some 
function from D to D and require that elements 
representing the same function be equal – that is   

( ( ))

D

d d

or

o id

ψ ϕ

ψ φ

=

=
  

The latter condition is called extensionality. 
These conditions together imply that andφ ψ  
are inverses--- that is, D is isomorphic to the 
space of functions from D to D  that can be the 
interpretations of functional abstractions: 

[ ]D D D≅ →  .Let us suppose we are working 

with the untyped calculusλ − , we need a 
solution ot the equation [ ],D A D D≅ + →  

where A is some predetermined domain 
containing interpretations for elements of C.  
Each element of D corresponds to either an 
element of A or an element of [ ],D D→  with a 
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tag. This equation can be solved by finding least 
fixed points of the function 

[ ]( )F X A X X= + →  from domains to domains 

--- that is, finding domains X  such that 

[ ],X A X X≅ + →  and such that for any 

domain Y also satisfying this equation, there is 
an embedding of X to Y  --- a pair of maps 

R

f

f

X Y�   

Such that   
R

X

R
Y

f o f id

f o f id

=

⊆
  

Where f g⊆  means that f approximates g in 
some ordering representing their information 
content. The key shift of perspective from the 
domain-theoretic to the more general category-
theoretic approach lies in considering F not as a 
function on domains, but as a functor on a 
category of domains. Instead of a least fixed 
point of the function, F. 
 
Definition 1.3: Let K be a category and 

:F K K→  as a functor. A fixed point of F is a 
pair (A,a), where A is a K-object and 

: ( )a F A A→  is an isomorphism. A prefixed 
point of F is a pair (A,a), where A is a K-object 
and a is any arrow from F(A) to A 
Definition 1.4 : An chainω −  in a category K  
is a diagram of the following form: 

1 2

1 2 .....
of f f

oD D D∆ = → → →   
Recall that a cocone µ  of an chainω − ∆  is a 
K-object X and a collection of K –arrows 

{ }: | 0i iD X iµ → ≥  such that 1i i io fµ µ +=  for 

all 0i ≥ . We sometimes write : Xµ ∆ →  as a 
reminder of the arrangement of 'sµ  
components Similarly, a colimit : Xµ ∆ → is a 

cocone with the property that if ': Xν ∆ →  is 
also a cocone then there exists a unique 
mediating arrow ':k X X→  such that for all 

0,, i ii v k oµ≥ = . Colimits of chainsω −  are 

sometimes referred to as limco itsω − . Dually, 
an op chainω −  in K is a diagram of the 
following form: 

1 2

1 2 .....
of f f

oD D D∆ = ← ← ←
 
A cone : Xµ → ∆  

of an op chainω − ∆  is a K-object X and a 
collection of K -arrows { }: | 0i iD iµ ≥  such that 

for all 10, i i ii f oµ µ +≥ = . An  opω -limit of an 
op chainω −  ∆  is a cone : Xµ → ∆  with the 

property that if ': Xν → ∆ is also a cone, then 
there exists a unique mediating arrow 

':k X X→  such that for all 0, i ii okµ ν≥ =  . 

We write k⊥  (or just ⊥ ) for the distinguish 

initial object of K, when it has one, and A⊥→  
for the unique arrow from ⊥  to each K-object 
A. It is also convenient to write 

1 2

1 2 .....
f f

D D−∆ = → → to denote all of ∆  except 

oD  and 0f . By analogy, µ−  is { }| 1i iµ ≥ . For 

the images of ∆  and µ  under F we write  
1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D∆ = → → →  

and { }( ) ( ) | 0iF F iµ µ= ≥   

We write iF  for the i-fold iterated composition 
of F – that is, 

1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f= = =  
,etc. With these definitions we can state that 
every monitonic function on a complete lattice 
has a least fixed point: 
 
Lemma 1.4. Let K  be a category with initial 
object ⊥  and let :F K K→  be a functor. 
Define the chainω − ∆  by 

2! ( ) (! ( )) (! ( ))
2( ) ( ) .........

F F F F F

F F
⊥→ ⊥ ⊥→ ⊥ ⊥→ ⊥

∆ =⊥ ⊥ ⊥→ → →   

If both : Dµ ∆ →  and ( ) : ( ) ( )F F F Dµ ∆ → are 
colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D→   is the mediating arrow from 

( )F µ   to the cocone µ −
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Theorem 1.4 Let a DAG G given in which each 
node is a random variable, and let a discrete 
conditional probability distribution of each node 
given values of its parents in G be specified. 
Then the product of these conditional 
distributions yields a joint probability 
distribution P of the variables, and (G,P) 
satisfies the Markov condition. 
 
Proof. Order the nodes according to an ancestral 
ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  
 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),
n n n n nP x x x P x pa P x Pa

P x pa P x pa
− −=

 

Where iPA is the set of parents of iX of in G and 

( | )i iP x pa is the specified conditional 

probability distribution. First we show this does 
indeed yield a joint probability distribution. 
Clearly, 1 20 ( , ,... ) 1nP x x x≤ ≤  for all values of the 

variables. Therefore, to show we have a joint 
distribution, as the variables range through all 
their possible values, is equal to one. To that 
end, Specified conditional distributions are the 
conditional distributions they notationally 
represent in the joint distribution. Finally, we 
show the Markov condition is satisfied. To do 
this, we need show for 1 k n≤ ≤  that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

≠ ≠
≠
=

 

Where kND is the set of nondescendents of kX

of in G. Since k kPA ND⊆ , we need only show 

( | ) ( | )k k k kP x nd P x pa= . First for a given k , 

order the nodes so that all and only 
nondescendents of kX precede kX in the 

ordering. Note that this ordering depends on k , 
whereas the ordering in the first part of the 
proof does not. Clearly then 

 

{ }

{ }

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X

−

+ +

=

=
 

follows 
kd∑    

 
 
We define the thm cyclotomic field to be the 

field [ ] / ( ( ))mQ x xΦ
 
Where ( )m xΦ is the thm

cyclotomic polynomial. [ ] / ( ( ))mQ x xΦ  ( )m xΦ  

has degree ( )mϕ over Q since ( )m xΦ has 

degree ( )mϕ . The roots of ( )m xΦ  are just the 

primitive thm roots of unity, so the complex 
embeddings of [ ] / ( ( ))mQ x xΦ are simply the 

( )mϕ maps  

[ ]: / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k
k m

Q x x C

k m k m where

x

σ

σ ξ

Φ
≤ =

=

a

p  

mξ being our fixed choice of primitive thm root 

of unity. Note that ( )k
m mQξ ξ∈ for every ;k it 

follows that ( ) ( )k
m mQ Qξ ξ= for all k relatively 

prime to m. In particular, the images of the iσ
coincide, so [ ] / ( ( ))mQ x xΦ is Galois over Q . 

This means that we can write ( )mQ ξ for 

[ ] / ( ( ))mQ x xΦ without much fear of ambiguity; 

we will do so from now on, the identification 
being .m xξ a One advantage of this is that one 

can easily talk about cyclotomic fields being 
extensions of one another,or intersections or 
compositums; all of these things take place 
considering them as subfield of .C  We now 
investigate some basic properties of cyclotomic 
fields. The first issue is whether or not they are 
all distinct; to determine this, we need to know 
which roots of unity lie in ( )mQ ξ .Note, for 

example, that if mis odd, then mξ− is a 2 thm root 

of unity. We will show that this is the only way 
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in which one can obtain any non-thm roots of 
unity. 
 
LEMMA 1.5   If mdividesn , then ( )mQ ξ  is 

contained in ( )nQ ξ  

PROOF. Since ,
n

m
mξ ξ= we have ( ),m nQξ ξ∈

so the result is clear 
 
LEMMA 1.6   If mand nare relatively prime, 
then  
  ( , ) ( )m n nmQ Qξ ξ ξ=  

and 
           ( ) ( )m nQ Q Qξ ξ∩ =  

(Recall the ( , )m nQ ξ ξ  is the compositum of 

( ) ( ) )m nQ and Qξ ξ  

 
PROOF. One checks easily that m nξ ξ is a 

primitive thmn root of unity, so that  
( ) ( , )mn m nQ Qξ ξ ξ⊆  

[ ] [ ][ ]( , ) : ( ) : ( :

( ) ( ) ( );
m n m nQ Q Q Q Q Q

m n mn

ξ ξ ξ ξ
ϕ ϕ ϕ

≤
= =

 

Since [ ]( ) : ( );mnQ Q mnξ ϕ= this implies that 

( , ) ( )m n nmQ Qξ ξ ξ=  We know that ( , )m nQ ξ ξ has 

degree ( )mnϕ  over  Q, so we must have  

 [ ]( , ) : ( ) ( )m n mQ Q nξ ξ ξ ϕ=  

and 

[ ]( , ) : ( ) ( )m n mQ Q mξ ξ ξ ϕ=  

 

[ ]( ) : ( ) ( ) ( )m m nQ Q Q mξ ξ ξ ϕ∩ ≥  

And thus that ( ) ( )m nQ Q Qξ ξ∩ =  

 
PROPOSITION 1.2 For any mand n  

 

[ ],( , ) ( )m n m nQ Qξ ξ ξ=  

And  

( , )( ) ( ) ( );m n m nQ Q Qξ ξ ξ∩ =  

here [ ],m n and ( ),m n denote the least common 

multiple and the greatest common divisor of m
and ,n respectively. 

 
PROOF.    Write 1 1

1 1...... ....k ke fe f
k km p p and p p=

where the ip are distinct primes. (We allow 

i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

=

=

=

=

=

[ ]

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q

ξ

ξ

=

=

 

 
An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Qξ ξ ξ∩ =
 

 
Mutual information measures the information 
transferred when ix  is sent and iy  is received, 
and is defined as 

2

( )
( , ) log (1)

( )

i

i
i i

i

xP y
I x y bits

P x
=  

In a noise-free channel, each iy is uniquely 

connected to the corresponding ix  , and so they 

constitute an input –output pair ( , )i ix y  for 
which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

xP and I x yy P x
= = bits; that 

is, the transferred information is equal to the 
self-information that corresponds to the input ix  
In a very noisy channel, the output iy and input 

ix would be completely uncorrelated, and so 
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( ) ( )i
i

j

xP P xy =  and also ( , ) 0;i jI x y = that is, 

there is no transference of information. In 
general, a given channel will operate between 
these two extremes. The mutual information is 
defined between the input and the output of a 
given channel. An average of the calculation of 
the mutual information for all input-output pairs 
of a given channel is the average mutual 
information: 

2
. .

(
( , ) ( , ) ( , ) ( , ) log

( )

i

j
i j i j i j

i j i j i

xP y
I X Y P x y I x y P x y

P x

 
 

= =  
 
 

∑ ∑
 bits 

per symbol . This calculation is done over the 
input and output alphabets. The average mutual 
information. The following expressions are 
useful for modifying the mutual information 
expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yxP x y P P y P P xy x

y
P y P P xx

xP x P P yy

= =

=

=

∑

∑

 

Then   

.

2
.

2
.

2
.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j
i j

i j
i j i

i j
ii j

j

i j
i j i

i
j

ji i

i
i i

I X Y P x y

P x y
P x

P x y
xP y

P x y
P x

xP P yy P x

P x H X
P x

XI X Y H X H Y

=

 
=  

 

 
 

−  
 
 

 
 
 

 =   

=

= −

∑

∑

∑

∑

∑

∑

 

Where 2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x yY xP y

=∑  is 

usually called the equivocation. In a sense, the 
equivocation can be seen as the information lost 
in the noisy channel, and is a function of the 
backward conditional probability. The 
observation of an output symbol jy provides 

( ) ( )XH X H Y−  bits of information. This 

difference is the mutual information of the 
channel. Mutual Information: Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yxP P y P P xy x=  

The mutual information fits the condition 
( , ) ( , )I X Y I Y X=  

And by interchanging input and output it is also 
true that 

( , ) ( ) ( )YI X Y H Y H X= −  

Where 

2

1
( ) ( ) log

( )j
j j

H Y P y
P y

=∑  

This last entropy is usually called the noise 
entropy. Thus, the information transferred 
through the channel is the difference between 
the output entropy and the noise entropy. 
Alternatively, it can be said that the channel 
mutual information is the difference between the 
number of bits needed for determining a given 
input symbol before knowing the corresponding 
output symbol, and the number of bits needed 
for determining a given input symbol after 
knowing the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H Y= −  

As the channel mutual information expression is 
a difference between two quantities, it seems 
that this parameter can adopt negative values. 
However, and is spite of the fact that for some 

, ( / )j jy H X y  can be larger than ( )H X , this is 

not possible for the average value calculated 
over all the outputs: 
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2 2
, ,

( ) ( , )
( , ) log ( , ) log

( ) ( ) ( )

i

j i j
i j i j

i j i ji i j

xP y P x y
P x y P x y

P x P x P y
=∑ ∑  

Then 

,

( ) ( )
( , ) ( , ) 0

( , )
i j

i j
i j i j

P x P y
I X Y P x y

P x y
− = ≤∑  

Because this expression is of the form 

2
1

log ( ) 0
M

i
i

i i

Q
P

P=
≤∑  

The above expression can be applied due to the 
factor ( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity 

iQ , which in this expression is a dummy 

variable that fits the condition 1ii
Q ≤∑ . It can 

be concluded that the average mutual 
information is a non-negative number. It can 
also be equal to zero, when the input and the 
output are independent of each other. A related 
entropy called the joint entropy is defined as 

2
,

2
,

2
,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j
i j i j

i j
i j

i j i j

i j
i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y

=

=

+

∑

∑

∑

 

 
 
Theorem 1.5: Entropies of the binary erasure 
channel (BEC) The BEC is defined with an 
alphabet of two inputs and three outputs, with 
symbol probabilities.  

1 2( ) ( ) 1 ,P x and P xα α= = − and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y yP p and Px x

yand P x

yand P px

yand P px

= − =

=

=

= −

 

 
Lemma 1.7. Given an arbitrary restricted time-
discrete, amplitude-continuous channel whose 
restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the 
states , let n be a fixed positive integer, and 

( )p x an arbitrary probability density function on 
Euclidean n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F . For any 

real number a, let 
( | )

( , ) : log (1)
( )

p y x
A x y a

p y

 
= > 
 

 

Then for each positive integeru , there is a code 
( , , )u n λ such that 

{ } { }( , ) (2)aue P X Y A P X Fλ −≤ + ∉ + ∉
 
Where 

{ }

{ }

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

∈ = =

∈ =

∫ ∫

∫ ∫

 

Proof: A sequence (1)x F∈ such that 

{ }
{ }

1
(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A

ε

ε

∈ = ≥ −

=
 

Choose the decoding set 1B to be (1)x
A . Having 

chosen (1) ( 1),........, kx x − and 1 1,..., kB B − , select 
kx F∈ such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x ε
−

=

 ∈ − = ≥ − 
 

U
 
 

Set ( )

1

1k

k

k ix i
B A B

−

=
= −U , If the process does not 

terminate in a finite number of steps, then the 
sequences ( )ix and decoding sets 

, 1,2,..., ,iB i u= form the desired code. Thus 

assume that the process terminates after t  steps. 
(Conceivably 0t = ). We will show t u≥  by 
showing that  

{ } { }( , )ate P X Y A P X Fε −≤ + ∉ + ∉ . We 

proceed as follows.  
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Let 

{ }
1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x

φ
=

∈

∈

∈ ∩

= = =

∈ =

=

= +

∫

∫ ∫

∫ ∫ ∫

U

 
 
 

C. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a 
in A is a subset such that a is subgroup of A 
regarded as a group under addition; 

 ,a a r A ra A∈ ∈ ⇒ ∈    
The ideal generated by a subset S of A is the 
intersection of all ideals A containing a ----- it is 
easy to verify that this is in fact an ideal, and 
that it consist of all finite sums of the form 

i i
r s∑  with ,i ir A s S∈ ∈ . When { }1,....., mS s s=

, we shall write 1( ,....., )ms s for the ideal it 

generates. 
Let a and b be ideals in A. The set 

{ }| ,a b a a b b+ ∈ ∈  is an ideal, denoted by 

a b+ . The ideal generated by  { }| ,ab a a b b∈ ∈
is denoted by ab . Note that ab a b⊂ ∩ . Clearly 
ab consists of all finite sums i i

a b∑  with 

ia a∈  and ib b∈ , and if 1( ,..., )ma a a=  and 

1( ,..., )nb b b= , then 1 1( ,..., ,..., )i j m nab a b a b a b=
.Let a  be an ideal of A. The set of cosets of a
in A forms a ring /A a , and a a a+a  is a 
homomorphism : /A A aφ a . The map 

1( )b bφ−a  is a one to one correspondence 
between the ideals of /A a  and the ideals of A 
containinga An ideal p  if prime if p A≠  and 
ab p a p∈ ⇒ ∈  or b p∈ . Thus p  is prime if 
and only if /A p  is nonzero and has the 
property that  0, 0 0,ab b a= ≠ ⇒ =   i.e., 

/A p is an integral domain. An ideal m  is 

maximal if |m A≠  and there does not exist an 
ideal n  contained strictly between m and A . 
Thus mis maximal if and only if /A m has no 
proper nonzero ideals, and so is a field. Note 
that m  maximal ⇒  m prime. The ideals of 
A B×  are all of the form a b× , with a  and b  
ideals in A and B . To see this, note that if c  is 
an ideal in  A B×  and ( , )a b c∈ , then 
( ,0) ( , )(1,0)a a b c= ∈  and (0, ) ( , )(0,1)b a b c= ∈ . 
This shows that c a b= ×  with  

{ }| ( , )a a a b c some b b= ∈ ∈
  

and  

  { }| ( , )b b a b c some a a= ∈ ∈
 

 
Let A  be a ring. An A -algebra is a ring B  
together with a homomorphism :Bi A B→ . A 

homomorphism of A -algebra B C→  is a 
homomorphism of rings : B Cϕ →  such that 

( ( )) ( )B Ci a i aϕ =  for all . An  A -algebra 

B is said to be finitely generated ( or of finite-
type over A) if there exist elements 1,..., nx x B∈  

such that every element of B can be expressed 
as a polynomial in the ix  with coefficients in 

( )i A , i.e., such that the homomorphism 

[ ]1,..., nA X X B→  sending iX  to  ix is 

surjective.  A ring homomorphism A B→  is 
finite, and B  is finitely generated as an A-
module. Let k  be a field, and let A be a k -
algebra. If 1 0≠  in A , then the map k A→  is 
injective, we can identify k with its image, i.e., 
we can regard k as a subring ofA  . If 1=0 in a 
ring R, the R is the zero ring, i.e., { }0R= . 

Polynomial rings.  Let  k  be a field. A 
monomial in 1,..., nX X  is an expression of the 

form 1
1 ... ,naa

n jX X a N∈  . The total degree 

of the monomial is ia∑ . We sometimes 

abbreviate it by 1, ( ,..., ) n
nX a aα α = ∈� . The 

elements of the polynomial ring [ ]1,..., nk X X  

a A∈
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are finite sums
1

1 1.... 1 ....... , ,n

n n

aa
a a n a a jc X X c k a∈ ∈∑ �

   
With the obvious notions of equality, addition 
and multiplication. Thus the monomials from 
basis for  [ ]1,..., nk X X  as a k -vector space. The 

ring [ ]1,..., nk X X is an integral domain, and the 

only units in it are the nonzero constant 
polynomials. A polynomial 1( ,..., )nf X X  is 

irreducible if it is nonconstant and has only the 
obvious factorizations, i.e., f gh g= ⇒  or h  is 

constant. Division in [ ]k X . The division 

algorithm allows us to divide a nonzero 
polynomial into another: let f  and g  be 

polynomials in [ ]k X with 0;g ≠  then there 

exist unique polynomials [ ],q r k X∈  such that 

f qg r= +  with either 0r =  or degr  < degg . 
Moreover, there is an algorithm for deciding 
whether ( )f g∈ , namely, find r and check 
whether it is zero. Moreover, the Euclidean 
algorithm allows to pass from finite set of 
generators for an ideal in [ ]k X to a single 

generator by successively replacing each pair of 
generators with their greatest common divisor. 

 
 (Pure) lexicographic ordering (lex). Here 
monomials are ordered by 
lexicographic(dictionary) order. More precisely, 
let 1( ,... )na aα =  and 1( ,... )nb bβ =  be two 

elements of n� ; then  α β>  and  X Xα β>
(lexicographic ordering) if, in the vector 
difference α β− ∈� , the left most nonzero 
entry is positive. For example,  
 2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z> > . Note that 
this isn’t quite how the dictionary would order 
them: it would put XXXYYZZZZ after XXXYYZ
. Graded reverse lexicographic order (grevlex). 
Here monomials are ordered by total degree, 
with ties broken by reverse lexicographic 
ordering. Thus, α β>  if i ia b>∑ ∑ , or 

i ia b=∑ ∑  and in α β−  the right most 

nonzero entry is negative. For example:  
4 4 7 5 5 4X Y Z X Y Z>  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ> > . 
 

Orderings on [ ]1,... nk X X  . Fix an ordering on 

the monomials in [ ]1,... nk X X . Then we can 

write an element f  of [ ]1,... nk X X  in a 

canonical fashion, by re-ordering its elements in 
decreasing order. For example, we would write 

2 2 3 2 24 4 5 7f XY Z Z X X Z= + − +   
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex= − + + +   
or 

2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex= + − +   
Let [ ]1,..., na X k X Xα

α ∈∑  , in decreasing 

order: 
0 1

0 1 0 1 0..., ..., 0f a X Xα α
α α α α α= + + > > ≠

  
Then we define. 

• The multidegree of f  to be multdeg( f )= 0α ;  

• The leading coefficient of f to be LC( f )=
0

aα ; 

• The leading monomial of  f to be LM( f ) = 
0Xα ; 

• The leading term of f to be LT( f ) = 0

0
a Xα

α   

For the polynomial 24 ...,f XY Z= +  the 
multidegree is (1,2,1), the leading coefficient is 
4, the leading monomial is 2XY Z , and the 
leading term is  24XY Z . The division 
algorithm in  [ ]1,... nk X X . Fix a monomial 

ordering in 2� . Suppose given a polynomial f  

and an ordered set 1( ,... )sg g  of polynomials; the 

division algorithm then constructs polynomials 

1,... sa a  and r   such that 1 1 ... s sf a g a g r= + + +   
Where either 0r =  or no monomial in r  is 
divisible by any of 1( ),..., ( )sLT g LT g   Step 1: 
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If 1( ) | ( )LT g LT f , divide 1g  into f  to get 

[ ]1 1 1 1
1

( )
, ,...,

( ) n

LT f
f a g h a k X X

LT g
= + = ∈

 
If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f= +   (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , 

and so on, until 1 1 1... s sf a g a g r= + + +   With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r= + , and repeat Step 

1 with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r= + + + +   (different 'ia s 

)   Monomial ideals. In general, an ideal a  will 
contain a polynomial without containing the 
individual terms of the polynomial; for example, 

the ideal 2 3( )a Y X= −  contains 2 3Y X− but not 
2Y  or 3X . 

 
DEFINITION 1.5 . An ideal a  is monomial if 

c X a X aα α
α ∈ ⇒ ∈∑  

 all α  with 0cα ≠ .  

PROPOSITION 1.3. Let a be a monomial ideal, 

and let { }|A X aαα= ∈ . Then A satisfies the 

condition , ( )nAα β α β∈ ∈ ⇒ + ∈ ∗�   

And a  is the k -subspace of [ ]1,..., nk X X  

generated by the ,X Aα α ∈ . Conversely, of A  

is a subset of n�  satisfying ( )∗ , then the k-

subspace  a  of [ ]1,..., nk X X  generated by 

{ }|X Aα α ∈ is a monomial ideal. 

 
PROOF.  It is clear from its definition that a 
monomial ideal a  is the  k -subspace of 

[ ]1,..., nk X X
  

generated by the set of monomials it contains. If 
X aα ∈

 and [ ]1,..., nX k X Xβ ∈
 . 

   

If a permutation is chosen uniformly and at 
random from the !n  possible permutations in 

,nS  then the counts ( )n
jC  of cycles of length j  

are dependent random variables. The joint 
distribution of ( ) ( ) ( )

1( ,..., )n n n
nC C C=  follows 

from Cauchy’s formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !
j

nn
cn

j
j j j

P C c N n c jc n
n j c= =

 
= = = = 

 
∑ ∏

  
for nc +∈� .  

 
Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

mn n n
mn

j j
jj j

m m

E C jm n
j == =

     
 = ≤           

∑∏ ∏
  

Proof.   This can be established directly by 
exploiting cancellation of the form 

[ ] !/ 1/ ( )!jm

j j j jc c c m= −   when ,j jc m≥  which 

occurs between the ingredients in Cauchy’s 
formula and the falling factorials in the 
moments. Write jm jm=∑ . Then, with the 

first sum indexed by 1( ,... ) n
nc c c += ∈�  and the 

last sum indexed by  1( ,..., ) n
nd d d += ∈�  via the 

correspondence ,j j jd c m= −  we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j
cj j

mnn
j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

= =

≥ = =

== =

 
= = 

 

 
= = 

 

 
= = − 

 

∑∏ ∏

∑ ∑ ∏

∑ ∑∏ ∏
  
This last sum simplifies to the indicator 
1( ),m n≤  corresponding to the fact that if 

0,n m− ≥  then 0jd =  for ,j n m> −  and a 

random permutation in n mS −  must have some 

cycle structure 1( ,..., )n md d − . The moments of 
( )n
jC   follow immediately as 

{ }( ) [ ]( ) 1 (1.2)n r r
jE C j jr n−= ≤   
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We note for future reference that (1.4) can also 
be written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j
jj j

E C E Z jm n
== =

     
= ≤     

    
∑∏ ∏   

Where the jZ  are independent Poisson-

distribution random variables that satisfy 
( ) 1/jE Z j=   

 
The marginal distribution of cycle counts 
provides a formula for the joint distribution of 
the cycle counts ,n

jC  we find the distribution of 
n
jC  using a combinatorial approach combined 

with the inclusion-exclusion formula. 
 
Lemma  1.8.   For 1 ,j n≤ ≤  
 [ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j
l

j j
P C k

k l

− −−

=

= = −∑   

Proof.     Consider the set I  of all possible 
cycles of length ,j  formed with elements 

chosen from { }1,2,... ,n  so that [ ]/j jI n= . For 

each ,Iα ∈  consider the “property” Gα  of 

having ;α  that is,  Gα is the set of permutations 

nSπ ∈  such that α  is one of the cycles of .π  

We then have ( )!,G n jα = − since the elements 

of { }1,2,...,n  not in α  must be permuted 

among themselves. To use the inclusion-
exclusion formula we need to calculate the term 

,rS  which is the sum of the probabilities of the 

r -fold intersection of properties, summing over 
all sets of r distinct properties. There are two 
cases to consider. If the r properties are indexed 
by r cycles having no elements in common, 
then the intersection specifies how rj  elements 
are moved by the permutation, and there are 
( )!1( )n rj rj n− ≤  permutations in the 

intersection. There are [ ] / ( !)rj rn j r  such 
intersections. For the other case, some two 
distinct properties name some element in 
common, so no permutation can have both these 

properties, and the r -fold intersection is empty. 
Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

= − ≤

× = ≤
  

Finally, the inclusion-exclusion series for the 
number of permutations having exactly k  
properties is 

,
0

( 1)l
k l

l

k l
S

l +
≥

+ 
−  

 
∑   

Which simplifies to (1.1) Returning to the 
original hat-check problem, we substitute j=1 in 
(1.1) to obtain the distribution of the number of 
fixed points of a random permutation. For 

0,1,..., ,k n=   

( )
1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l

−

=
= = −∑   

and the moments of ( )
1

nC  follow from (1.2) with 

1.j =  In particular, for  2,n ≥  the mean and 

variance of ( )
1

nC are both equal to 1. The joint 

distribution of ( ) ( )
1( ,..., )n n

bC C  for any 1 b n≤ ≤  

has an expression similar to (1.7); this too can 
be derived by inclusion-exclusion. For any 

1( ,..., ) b
bc c c += ∈�  with ,im ic=∑   

1

( ) ( )
1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n
b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l
+ +

≥= =
≤ −

=

     = −    
     

∑

∑∏ ∏

  
The joint moments of the first b  counts 

( ) ( )
1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m+ = = =   

 
The limit distribution of cycle counts 
It follows immediately from Lemma 1.2 that for 
each fixed ,j  as ,n → ∞  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k

−
−= → =   
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So that ( )n
jC converges in distribution to a 

random variable jZ  having a Poisson 

distribution with mean 1/ ;j  we use the notation 
( )n
j d jC Z→  where (1/ )j oZ P j�   to describe 

this. Infact, the limit random variables are 
independent. 
 
Theorem 1.6   The process of cycle counts 
converges in distribution to a Poisson process of 

�  with intensity 1j − . That is, as ,n → ∞   
( ) ( )
1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z→   

Where the , 1, 2,...,jZ j =  are independent 

Poisson-distributed random variables with  
1

( )jE Z
j

=   

Proof.  To establish the converges in 
distribution one shows that for each fixed 1,b ≥  
as ,n → ∞   
 

( ) ( )
1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c= → =   

 
Error rates 
The proof of Theorem says nothing about the 
rate of convergence. Elementary analysis can be 
used to estimate this rate when 1b = . Using 
properties of alternating series with decreasing 
terms, for 0,1,..., ,k n=   

( )
1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

− ≤ = − =
− + − +

≤
− +

   

 
It follows that  

1 1
( )
1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

+ +

=

−≤ = − = ≤
+ + +∑   

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n

−

> = + + + <
+ + + + +

  

We see from (1.11) that the total variation 
distance between the distribution ( )

1( )nL C  of 
( )
1

nC  and the distribution 1( )L Z  of 1Z  

 
Establish the asymptotics of ( )( )n

nA C Ρ    under 

conditions 0( )A  and 01( ),B  where 

{ }
'

( ) ( )

1 1

( ) 0 ,
i i

n n
n ij

i n r j r

A C C
≤ ≤ + ≤ ≤

= =I I
 

and 
''( / ) 1 ( )g

i i idr r O iζ −= − =  as ,i → ∞  for 

some ' 0.g >   We start with the expression 

'

'
( ) 0

0

0
1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i
i n i

r j r

P T Z n
P A C

P T Z n

E
ir

θ
≤ ≤
+ ≤ ≤

==
=

 
− + 

 
∏

  

{ }{ }

'
0

1 1

1

1 '
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n

θ θ θ

ϕ

− −

≥

−

=

 = + − 
 

+

∑   

and 

{ }{ }

'
0

1 1

1

1
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n

θ θ θ

ϕ

− −

≥

−

=

 = + − 
 

+

∑  

Where { }
'
1,2,7 ( )nϕ  refers to the quantity derived 

from 'Z . It thus follows that 
( ) (1 )[ ( )]n d

nP A C Kn θ− −�  for a constant K , 

depending on Z  and the '
ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  

and 01( )B  are satisfied and if 
'

( )g
i O iζ ∗ −=  from 

some ' 0,g >  since, under these circumstances, 

both { }
1 '

1,2,7 ( )n nϕ−  and  { }
1

1,2,7 ( )n nϕ−  tend to zero 

as .n → ∞  In particular, for polynomials and 
square free polynomials, the relative error in 
this asymptotic approximation is of order 1n−  if 

' 1.g >   
 
For 0 / 8b n≤ ≤  and 0,n n≥  with 0n   
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{ }7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n bε
≤
≤

� �

  

Where { }7,7 ( , ) ( / )n b O b nε =  under Conditions 

0 1( ),( )A D  and 11( )B  Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l= = =
� �

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n

∈

=

= =

 = −− = 

∑

� �

  

Suppressing the argument Z  from now on, we 
thus obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
� �

 

0
0 0

[ ]
[ ] 1

[ ]
bn

b
r n

P T n r
P T r

P T n≥ +

 = −= = − = 
∑  

[ /2]
0

0
/2 0 0

[ ]
[ ]

[ ]

n
b

b
r n r b

P T r
P T r

P T n> =

=≤ = +
=∑ ∑  

0
0

[ ]( [ ] [ ]
n

b bn bn
s

P T s P T n s P T n r
= +

 × = = − − = − 
 
∑  

[ /2]

0 0
/2 0

[ ] [ ]
n

b b
r n r

P T r P T r
> =

≤ = + =∑ ∑  

{ }[ /2]

0
0 0

[ /2]

0 0
0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b
s n

n n

b bn n
s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n

=

= = +

= − − = −
× =

=

+ = = = − =

∑

∑ ∑

 The first sum is at most 1
02 ;bn ET− the third is 

bound by 

{ }

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n Pθ

ε
θ

< ≤
= =

≤
  

{ }

{ }

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b
r s

b

n
n n P T r P T s r s

P

n ET

P n

θ

θ

φ
θ

φ
θ

− ∗

= =

∗

= = −

≤

∑ ∑

  
Hence we may take 

{ }
{ }

{ }

10.81
07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P

θ

θ

φ
ε

θ

ε
θ

∗
−

  = + 
  

+

  

 
Required order under Conditions 0 1( ),( )A D  and 

11( ),B  if ( ) .S ∞ < ∞  If not, { } ( )10.8 nφ∗  can be 

replaced by { } ( )10.11 nφ∗ in the above, which has 

the required order, without the restriction on the 

ir  implied by ( )S ∞ < ∞ . Examining the 

Conditions  0 1( ),( )A D  and 11( ),B it is perhaps 

surprising to find that 11( )B  is required instead 

of just 01( );B  that is, that we should need 
1

2
( )a

ill
l O iε −

≥
=∑   to hold for some 1 1a > . A 

first observation is that a similar problem arises 
with the rate of decay of 1iε  as well. For this 

reason, 1n  is replaced by 1n
�

. This makes it 

possible to replace condition 1( )A  by the 

weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for { } ( )7,7 ,n bε  to 

be of order ( / );O b n   the decay rate requirement 

of order 1i γ− −  is shifted from 1iε  itself to its first 

difference. This is needed to obtain the right 
approximation error for the random mappings 
example. However, since all the classical 
applications make far more stringent 
assumptions about the 1, 2,i lε ≥  than are made 

in 11( )B . The critical point of the proof is seen 
where the initial estimate of the difference

( ) ( )[ ] [ 1]m m
bn bnP T s P T s= − = + . The factor 
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{ }10.10 ( ),nε  which should be small, contains a far 

tail element from 1n
�

 of the form 1 1( ) ( ),n u nθφ ∗+  

which is only small if 1 1,a >  being otherwise of 

order 11( )aO n δ− +  for any 0,δ >  since 2 1a >  is in 

any case assumed. For / 2,s n≥  this gives rise 

to a contribution of order  11( )aO n δ− − +  in the 
estimate of the difference 

[ ] [ 1],bn bnP T s P T s= − = +  which, in the 

remainder of the proof, is translated into a 
contribution of order 11( )aO tn δ− − + for differences 

of the form [ ] [ 1],bn bnP T s P T s= − = +  finally 

leading to a contribution of order 1abn δ− +  for any 
0δ >  in { }7.7 ( , ).n bε  Some improvement would 

seem to be possible, defining the function g  by 

{ } { }( ) 1 1 ,w s w s tg w = = += −   differences that are of 

the form [ ] [ ]bn bnP T s P T s t= − = +  can be 

directly estimated, at a cost of only a single 
contribution of the form 1 1( ) ( ).n u nθφ ∗+  Then, 

iterating the cycle, in which one estimate of a 
difference in point probabilities is improved to 
an estimate of smaller order, a bound of the 
form  

112[ ] [ ] ( )a
bn bnP T s P T s t O n t n δ− − +−= − = + = +  for 

any 0δ >  could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n δ− +− +
for any 0δ > , to replace { }7.7 ( , ).n bε  This would 

be of the ideal order ( / )O b n for large enough 
,b  but would still be coarser for small .b   

 
 
With b and n  as in the previous section, we 
wish to show that  

{ }

1
0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b

θ

ε

−− + − −

≤

  

Where { }
121 1

7.8 ( , ) ( [ ])n b O n b n b nβ δε − +− −= +  for 

any 0δ >  under Conditions 0 1( ),( )A D  and 

12( ),B with 12β . The proof uses sharper 

estimates. As before, we begin with the formula  

 
0

0 0

( ( [1, ]), ( [1, ]))

[ ]
[ ] 1

[ ]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n≥ +

 = −= = − = 
∑

� �

  

Now we observe that  

{ }

[ /2]
0

0
0 00 0

0
[ /2] 1

2 2
0 0 0

/2

0

10.5(2)2 2
0

[ ] [ ]
[ ] 1

[ ] [ ]

[ ]( [ ] [ ])

4 ( max [ ]) / [ ]

[ / 2]

3 ( / 2, )
8 , (1.1)

[0,1]

n
bn b

b
r rn n

n

b bn bn
s n

b b n
n s n

b

b

P T n r P T r
P T r

P T n P T n

P T s P T n s P T n r

n ET P T s P T n

P T n

n b
n ET

Pθ

ε
θ

≥ =+

= +

−

< ≤

−

 = − == − − = = 

× = = − − = −

≤ + = =

+ >

≤ +

∑ ∑

∑
  

We have   

{ } { }{ }{ }

0[ /2]

0
0

[ /2]

0
0

[ /2]

0 0
0

0 02
0 00

1
010.14 10.8

[ ]

[ ]

( [ ]( [ ] [ ]

( )(1 )
[ ] [ ] )

1

1
[ ] [ ]

[ ]

( , ) 2( ) 1 4 ( )

6
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n
r

n
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s

n

b n
s

b b
r sn

P T r
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P T s P T n s P T n r

s r
P T s P T n

n

P T r P T s s r
n P T n

n b r s n K n

θ

ε θ θ φ

=

= +

= +

≥ ≥

− ∗

=
=

 
× = = − − = − 
 

 − −− = = + 

≤ = = −
=

× + ∨ − +

≤

∑

∑

∑

∑ ∑

{ }

{ }{ }
}

0 10.14

2 2
0 0 10.8

( , )
[0,1]

4 1 4 ( )

3
( ) , (1.2)
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− ∗+ − +

  



International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012 
ISSN (Online): 2319-6564 
www.ijesonline.com 

IJESPR 
www.ijesonline.com 

154 
 

 
The approximation in (1.2) is further simplified 
by noting that  
[ /2] [ /2]

0 0
0 0

( )(1 )
[ ] [ ]

1

n n

b b
r s

s r
P T r P T s

n

θ
+= =

 − −= = + 
∑ ∑  

0
0

( )(1 )
[ ]

1b
s

s r
P T s

n

θ
= +

− − − = + 
∑  

{ }

[ /2]

0 0
0 [ /2]

1 2 2
0 0 0

( ) 1
[ ] [ ]

1

1 ( 1 / 2 ) 2 1 , (1.3)

n

b b
r s n

b b b

s r
P T r P T s

n

n E T T n n ET

θ

θ θ
= >

− −

− −
≤ = =

+

≤ − > ≤ −

∑ ∑

 
 
and then by observing that  

{ }

0 0
[ /2] 0

1
0 0 0 0

2 2
0

( )(1 )
[ ] [ ]

1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)

b b
r n s

b b b b

b

s r
P T r P T s

n

n ET P T n E T T n

n ET

θ

θ

θ

> ≥

−

−

− − = = + 

≤ − > + >

≤ −

∑ ∑

 
 
Combining the contributions of (1.2) –(1.3), we 
thus find tha

{ }

{ } { }{ }
{ }

1
0 0

0 0

7.8

1
010.5(2) 10.14

10.82 2
0

( ( [1, ]), ( [1, ]))

( 1) [ ] [ ]( )(1 )

( , )

3
( / 2, ) 2 ( , )

[0,1]

24 1 ( )
2 4 3 1 (1.5)

[0,1]
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b b
r s

b

b

d L C b L Z b

n P T r P T s s r

n b

n b n ET n b
P

n
n ET

P

θ

θ

θ

ε

ε ε
θ

θ φ
θ

θ

−

≥ ≥ +

−

∗
−

 − + = = − − 
 

≤

= +

 − + + − + 
  

∑ ∑

� �

 
The quantity { }7.8 ( , )n bε is seen to be of the order 

claimed under Conditions 0 1( ),( )A D  and 12( )B , 

provided that ( ) ;S ∞ < ∞  this supplementary 

condition can be removed if { }10.8 ( )nφ∗  is 

replaced by { }10.11 ( )nφ∗    in the definition of 

{ }7.8 ( , )n bε , has the required order without the 

restriction on the ir  implied by assuming that 

( ) .S ∞ < ∞ Finally, a direct calculation now 
shows that 

0 0
0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b
r s

b b

P T r P T s s r

E T ET

θ

θ

≥ ≥ +

 = = − − 
 

= − −

∑ ∑

 
 
Example 1.0.  Consider the point 

(0,...,0) nO = ∈� . For an arbitrary vector r , the 
coordinates of the point x O r= +  are equal to 
the respective coordinates of the vector 

1: ( ,... )nr x x x=  and 1( ,..., )nr x x= . The vector r 
such as in the example is called the position 
vector or the radius vector of the point x  . (Or, 
in greater detail: r  is the radius-vector of x  
w.r.t an origin O). Points are frequently 
specified by their radius-vectors. This 
presupposes the choice of O as the “standard 
origin”.   Let us summarize. We have 
considered n�  and interpreted its elements in 
two ways: as points and as vectors. Hence we 
may say that we leading with the two copies of  

:n�  
n� = {points},      n� = {vectors}  

Operations with vectors: multiplication by a 
number, addition. Operations with points and 
vectors: adding a vector to a point (giving a 
point), subtracting two points (giving a vector). 

n� treated in this way is called an n-
dimensional affine space. (An “abstract” affine 
space is a pair of sets , the set of points and the 
set of vectors so that the operations as above are 
defined axiomatically). Notice that vectors in an 
affine space are also known as “free vectors”. 
Intuitively, they are not fixed at points and 
“float freely” in space. From n� considered as 
an affine space we can precede in two opposite 
directions: n�  as an Euclidean space ⇐  n� as 
an affine space ⇒  n� as a manifold.Going to 
the left means introducing some extra structure 
which will make the geometry richer. Going to 
the right means forgetting about part of the 
affine structure; going further in this direction 
will lead us to the so-called “smooth (or 
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differentiable) manifolds”. The theory of 
differential forms does not require any extra 
geometry. So our natural direction is to the 
right. The Euclidean structure, however, is 
useful for examples and applications. So let us 
say a few words about it: 
 
Remark 1.0.  Euclidean geometry.  In n�  
considered as an affine space we can already do 
a good deal of geometry. For example, we can 
consider lines and planes, and quadric surfaces 
like an ellipsoid. However, we cannot discuss 
such things as “lengths”, “angles” or “areas” 
and “volumes”. To be able to do so, we have to 
introduce some more definitions, making n� a 
Euclidean space. Namely, we define the length 
of a vector 1( ,..., )na a a=  to be  

1 2 2: ( ) ... ( ) (1)na a a= + +   

After that we can also define distances between 
points as follows: 

( , ) : (2)d A B AB=
uuur

  

One can check that the distance so defined 
possesses natural properties that we expect: is it 
always non-negative and equals zero only for 
coinciding points; the distance from A to B is 
the same as that from B to A (symmetry); also, 
for three points, A, B and C, we have 

( , ) ( , ) ( , )d A B d A C d C B≤ +  (the “triangle 
inequality”). To define angles, we first introduce 
the scalar product of two vectors 
 1 1( , ) : ... (3)n na b a b a b= + +   

Thus ( , )a a a=  . The scalar product is also 

denote by dot: . ( , )a b a b= , and hence is often 
referred to as the “dot product” . Now, for 
nonzero vectors, we define the angle between 
them by the equality 

( , )
cos : (4)

a b

a b
α =   

The angle itself is defined up to an 
integral multiple of 2π  . For this definition to 
be consistent we have to ensure that the r.h.s. of 

(4) does not exceed 1 by the absolute value. 
This follows from the inequality 

2 22( , ) (5)a b a b≤   

known as the Cauchy–Bunyakovsky–Schwarz 
inequality (various combinations of these three 
names are applied in different books). One of 
the ways of proving (5) is to consider the scalar 
square of the linear combination ,a tb+  where 
t R∈ . As  ( , ) 0a tb a tb+ + ≥  is a quadratic 
polynomial in t  which is never negative, its 
discriminant must be less or equal zero. Writing 
this explicitly yields (5). The triangle inequality 
for distances also follows from the inequality 
(5). 

 
Example 1.1.    Consider the function ( ) if x x=  

(the i-th coordinate). The linear function idx  
(the differential of ix  ) applied to an arbitrary 
vector h  is simply ih .From these examples 
follows that we can rewrite df  as 

1
1

... , (1)n
n

f f
df dx dx

x x

∂ ∂= + +
∂ ∂

  

which is the standard form. Once again: the 
partial derivatives in (1) are just the coefficients 
(depending on x ); 1 2, ,...dx dx  are linear 
functions giving on an arbitrary vector h  its 

coordinates 1 2, ,...,h h  respectively. Hence 
  

1
( ) 1

( )( )

... , (2)

hf x

n
n

f
df x h h

x
f

h
x

∂= ∂ = +
∂

∂+
∂

 

 
Theorem   1.7.     Suppose we have a 
parametrized curve ( )t x ta  passing through 

0
nx ∈�  at 0t t=  and with the velocity vector 

0( )x t υ=  Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt υ υ= ∂ =   
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Proof.  Indeed, consider a small increment of 
the parameter 0 0:t t t t+ ∆a , Where 0t∆ a . 

On the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h hβ+ − = +   for an 

arbitrary vectorh , where ( ) 0hβ →  when 0h →  
. Combining it together, for the increment of 

( ( ))f x t   we obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

υ α
β υ α υ α

υ γ

+ ∆ −
= ∆ + ∆ ∆
+ ∆ + ∆ ∆ ∆ + ∆ ∆
= ∆ + ∆ ∆

     

For a certain ( )tγ ∆  such that ( ) 0tγ ∆ → when 

0t∆ →  (we used the linearity of 0( )df x ). By 
the definition, this means that the derivative of 

( ( ))f x t  at 0t t=  is exactly 0( )( )df x υ . The 

statement of the theorem can be expressed by a 
simple formula: 

1
1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

∂ ∂= + +
∂ ∂

  

 
To calculate the value Of df  at a point 0x  on a 

given vector υ  one can take an arbitrary curve 
passing Through 0x  at 0t  with υ  as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t= . 
 

Theorem 1.8.  For functions , :f g U → � ,

,nU ⊂ �   

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

+ = +
= +

   

 
Proof. Consider an arbitrary point 0x  and an 

arbitrary vector υ  stretching from it. Let a curve 
( )x t  be such that 0 0( )x t x=  and 0( )x t υ= .  

Hence 0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

υ+ = +   

at 0t t=  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

υ =   

at 0t t=  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 
usual derivative Now, almost without change 
the theory generalizes to functions taking values 
in  m�  instead of � . The only difference is that 
now the differential of a map : mF U → �  at a 
point x  will be a linear function taking vectors 
in n�  to vectors in m� (instead of � ) . For an 
arbitrary vector | ,nh∈ �   

 
( ) ( ) ( )( )F x h F x dF x h+ = +   

+ ( ) (3)h hβ   

Where ( ) 0hβ →   when  0h → . We have  
1( ,..., )mdF dF dF=  and  

1
1

1 1

11

1

...

....

... ... ... ... (4)

...

n
n

n

nm m

n

F F
dF dx dx

x x

F F
dxx x

dxF F

x x

∂ ∂= + +
∂ ∂

 ∂ ∂
  ∂ ∂  =   
  ∂ ∂    ∂ ∂ 

  

 
In this matrix notation we have to write vectors 
as vector-columns. 

 
Theorem 1.9. For an arbitrary parametrized 
curve ( )x t  in n� , the differential of a   map 

: mF U → �  (where nU ⊂ � ) maps the velocity 
vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m�   
.( ( ))

( ( ))( ( )) (1)
dF x t

dF x t x t
dt

=     

 
Proof.  By the definition of the velocity vector, 

.

( ) ( ) ( ). ( ) (2)x t t x t x t t t tα+ ∆ = + ∆ + ∆ ∆
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Where ( ) 0tα ∆ →  when 0t∆ → . By the 
definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h hβ+ = + +   

Where ( ) 0hβ →  when 0h → . we obtain  
.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t

α

α

β α α

γ

+ ∆ = + ∆ + ∆ ∆

= + ∆ + ∆ ∆ +

∆ + ∆ ∆ ∆ + ∆ ∆

= + ∆ + ∆ ∆

144424443

   

 
For some ( ) 0tγ ∆ →  when 0t∆ → . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 
vector of ( )F x . As every vector attached to a 
point can be viewed as the velocity vector of 
some curve passing through this point, this 
theorem gives a clear geometric picture of dF  
as a linear map on vectors. 

   
Theorem 1.10 Suppose we have two maps 

:F U V→  and : ,G V W→  where 

, ,n m pU V W⊂ ⊂ ⊂� � �  (open domains). Let 
: ( )F x y F x=a . Then the differential of the 

composite map :GoF U W→  is the 
composition of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x=   
 

Proof.   We can use the description of the 
differential .Consider a curve ( )x t  in n�  with 

the velocity vector 
.

x . Basically, we need to 
know to which vector in  p� it is taken by 

( )d GoF . the curve ( )( ( ) ( ( ( ))GoF x t G F x t= . By 
the same theorem, it equals the image under dG  
of the Anycast Flow vector to the curve ( ( ))F x t  

in m� . Applying the theorem once again, we 
see that the velocity vector to the curve ( ( ))F x t

is the image under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x=   for an arbitrary vector 
.

x  . 
 

Corollary 1.0.    If we denote coordinates in n�

by 1( ,..., )nx x  and in m� by 1( ,..., )my y , and 
write 

1
1

1
1

... (1)

... , (2)

n
n

n
n

F F
dF dx dx

x x
G G

dG dy dy
y y

∂ ∂= + +
∂ ∂
∂ ∂= + +
∂ ∂

  

Then the chain rule can be expressed as follows: 
1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

∂ ∂= + +
∂ ∂

  

Where idF  are taken from (1). In other words, 
to get ( )d GoF  we have to substitute into (2) the 

expression for i idy dF=  from (3). This can also 
be expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F
dxy y x x

d GoF

dxG G F F

y y x x

 ∂ ∂  ∂ ∂
   ∂ ∂ ∂ ∂   
 =   
   ∂ ∂ ∂ ∂      ∂ ∂ ∂ ∂  

 

 
i.e., if dG  and dF  are expressed by matrices of 
partial derivatives, then ( )d GoF  is expressed 
by the product of these matrices. This is often 
written as  
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1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z
y yx x

z z z z

x x y y

y y

x x

y y

x x

 ∂ ∂ ∂ ∂
   ∂ ∂∂ ∂   
 = 
  ∂ ∂ ∂ ∂     ∂ ∂ ∂ ∂   

 ∂ ∂
 ∂ ∂ 
 
 ∂ ∂  ∂ ∂ 

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

µ µ

=

∂ ∂ ∂=
∂ ∂ ∂∑   

Where it is assumed that the dependence of 
my∈�  on nx∈�  is given by the map F , the 

dependence of pz∈�  on my∈�  is given by 

the map ,G  and the dependence of  pz∈� on 
nx∈� is given by the composition GoF .  

 
Definition 1.6.  Consider an open domain 

nU ⊂ � . Consider also another copy of n� , 
denoted for distinction n

y� , with the standard 

coordinates 1( ... )ny y . A system of coordinates 
in the open domain U  is given by a map 

: ,F V U→  where n
yV ⊂ �  is an open domain 

of n
y� , such that the following three conditions 

are satisfied :  
(1) F  is smooth; 

(2) F  is invertible; 

(3) 1 :F U V− →  is also smooth 

 
The coordinates of a point x U∈  in this system 
are the standard coordinates of 1( ) n

yF x− ∈�  

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y=a   

Here the variables 1( ..., )ny y  are the “new” 
coordinates of the point x   

 
Example  1.2.     Consider a curve in 2�  
specified in polar coordinates as  

( ) : ( ), ( ) (1)x t r r t tϕ ϕ= =   
We can simply use the chain rule. The map 

( )t x ta  can be considered as the composition 
of the maps  ( ( ), ( )), ( , ) ( , )t r t t r x rϕ ϕ ϕa a . 
Then, by the chain rule, we have  

. . .

(2)
dx x dr x d x x

x r
dt r dt dt r

ϕ ϕ
ϕ ϕ

∂ ∂ ∂ ∂= = + = +
∂ ∂ ∂ ∂

   

Here 
.

r  and 
.

ϕ  are scalar coefficients depending 
on t , whence the partial derivatives 

,x x
r ϕ

∂ ∂
∂ ∂   are vectors depending on point in 

2� . We can compare this with the formula in 

the “standard” coordinates: 
. . .

1 2x e x e y= + . 

Consider the vectors   ,x x
r ϕ

∂ ∂
∂ ∂ . Explicitly 

we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r
x

r r

ϕ ϕ

ϕ ϕ
ϕ

∂ =
∂
∂ = −
∂

  

From where it follows that these vectors make a 
basis at all points except for the origin (where 

0r = ). It is instructive to sketch a picture, 
drawing vectors corresponding to a point as 
starting from that point. Notice that  

,x x
r ϕ

∂ ∂
∂ ∂  are, respectively, the velocity 

vectors for the curves ( , )r x r ϕa   

0( )fixedϕ ϕ=  and 0( , ) ( )x r r r fixedϕ ϕ =a . 

We can conclude that for an arbitrary curve 
given in polar coordinates the velocity vector 

will have components 
. .

( , )r ϕ  if as a basis we 

take : , : :r
x xe er ϕ ϕ

∂ ∂= =∂ ∂   

. . .

(5)rx e r eϕ ϕ= +    

A characteristic feature of the basis ,re eϕ  is that 

it is not “constant” but depends on point. 
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Vectors “stuck to points” when we consider 
curvilinear coordinates. 

 
Proposition  1.3.   The velocity vector has the 
same appearance in all coordinate systems. 
Proof.        Follows directly from the chain rule 
and the transformation law for the basis ie .In 

particular, the elements of the basis ii
xe

x
∂= ∂

 

(originally, a formal notation) can be understood 
directly as the velocity vectors of the coordinate 
lines 1( ,..., )i nx x x xa   (all coordinates but ix  
are fixed). Since we now know how to handle 
velocities in arbitrary coordinates, the best way 
to treat the differential of a map : n mF →� �  is 
by its action on the velocity vectors. By 
definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt
a   

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 0
nx ∈�  to vectors attached 

to the point ( ) mF x ∈�   

1
1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n
n

n

m
nm m

n

F F
dF dx dx

x x

F F
dxx x

e e

dxF F

x x

∂ ∂= + +
∂ ∂

 ∂ ∂
  ∂ ∂  
  
  ∂ ∂    ∂ ∂ 

  

In particular, for the differential of a function 
we always have  

1
1

... , (3)n
n

f f
df dx dx

x x

∂ ∂= + +
∂ ∂

  

Where ix  are arbitrary coordinates. The form of 
the differential does not change when we 
perform a change of coordinates. 

 
Example  1.3   Consider a 1-form in 2�  given 
in the standard coordinates: 

 

A ydx xdy= − +   In the polar coordinates we 
will have cos , sinx r y rϕ ϕ= = , hence 

cos sin

sin cos

dx dr r d

dy dr r d

ϕ ϕ ϕ
ϕ ϕ ϕ

= −
= +

  

Substituting into A, we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= − −
+ +
= + =

  

Hence  2A r dϕ=  is the formula for A  in the 
polar coordinates. In particular, we see that this 
is again a 1-form, a linear combination of the 
differentials of coordinates with functions as 
coefficients. Secondly, in a more conceptual 
way, we can define a 1-form in a domain U  as 
a linear function on vectors at every point of U : 

1
1( ) ... , (1)n

nω υ ω υ ω υ= + +   

If i
ieυ υ=∑ , where ii

xe
x

∂= ∂
. Recall that the 

differentials of functions were defined as linear 
functions on vectors (at every point), and  

( ) (2)i i i
j jj

x
dx e dx

x
δ∂ = = ∂ 

    at every 

point x .  
 
Theorem  1.9.   For arbitrary 1-form ω  and 

path γ , the integral 
γ

ω∫  does not change if we 

change parametrization of γ  provide the 
orientation remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

ω  and  

'
'

( ( ( ))),
dx

x t t
dt

ω  As 

'
'

( ( ( ))),
dx

x t t
dt

ω = '
' '

( ( ( ))), . ,
dx dt

x t t
dt dt

ω   

 
 
 
Let p  be a rational prime and let ( ).pK ζ= �  

We write ζ  for pζ  or this section. Recall that 



International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012 
ISSN (Online): 2319-6564 
www.ijesonline.com 

IJESPR 
www.ijesonline.com 

160 
 

K  has degree ( ) 1p pϕ = −  over .�  We wish to 

show that [ ].KO ζ= �  Note that ζ  is a root of 

1,px −  and thus is an algebraic integer; since 

KΟ  is a ring we have that [ ] .KOζ ⊆�  We give 

a proof without assuming unique factorization 
of ideals. We begin with some norm and trace 
computations. Let j  be an integer. If j is not 

divisible by ,p  then jζ  is a primitive thp  root 
of unity, and thus its conjugates are 

2 1, ,..., .pζ ζ ζ −  Therefore 
 

2 1
/ ( ) ... ( ) 1 1j p

K pTr ζ ζ ζ ζ ζ−= + + + = Φ − = −�   

If p  does divide ,j  then 1,jζ =  so it has only 

the one conjugate 1, and  / ( ) 1j
KTr pζ = −�  By 

linearity of the trace, we find that  
2

/ /

1
/

(1 ) (1 ) ...

(1 )

K K

p
K

Tr Tr

Tr p

ζ ζ

ζ −

− = − =

= − =
� �

�

 

We also need to compute the norm of 1 ζ− . For 
this, we use the factorization  

 
1 2

2 1

... 1 ( )

( )( )...( );

p p
p

p

x x x

x x xζ ζ ζ

− −

−

+ + + = Φ

= − − −
  

Plugging in 1x =  shows that  
 2 1(1 )(1 )...(1 )pp ζ ζ ζ −= − − −   

Since the (1 )jζ−  are the conjugates of (1 ),ζ−
this shows that  / (1 )KN pζ− =�  The key result 

for determining the ring of integers KO  is the 
following. 
 
LEMMA 1.9 
  (1 ) KO pζ− ∩ =� �   

Proof.  We saw above that p  is a multiple of 

(1 )ζ−  in ,KO  so the inclusion 

(1 ) KO pζ− ∩ ⊇� �  is immediate.  Suppose 

now that the inclusion is strict. Since 
(1 ) KOζ− ∩� is an ideal of �  containing p�  

and p� is a maximal ideal of � , we must have  

(1 ) KOζ− ∩ =� �  Thus we can write 
 1 (1 )α ζ= −   

For some .KOα ∈  That is, 1 ζ−  is a unit in .KO   
 
COROLLARY 1.1   For any ,KOα ∈  

/ ((1 ) ) .KTr pζ α− ∈� �   

PROOF.       We have 
 

/ 1 1

1 1 1 1

1
1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p
p

Tr ζ α σ ζ α σ ζ α
σ ζ σ α σ ζ σ α

ζ σ α ζ σ α

−

− −

−
−

− = − + + −

= − + + −

= − + + −

�

 
Where the iσ  are the complex embeddings of 

K  (which we are really viewing as 
automorphisms of K ) with the usual ordering.  
Furthermore, 1 jζ−  is a multiple of 1 ζ−  in KO  

for every 0.j ≠  Thus 

/ ( (1 )) (1 )K KTr Oα ζ ζ− ∈ −�  
Since the trace is 

also a rational integer. 
 
PROPOSITION 1.4  Let p  be a prime number 

and let | ( )pK ζ= �  be the thp  cyclotomic field. 

Then  
[ ] [ ] / ( ( ));K p pO x xζ= ≅ Φ� �  Thus 

21, ,..., p
p pζ ζ −  is an integral basis for KO . 

PROOF.    Let   KOα ∈  and write 
2

0 1 2... p
pa a aα ζ ζ −

−= + + +   With .ia ∈�  Then 

 
2

0 1

2 1
2

(1 ) (1 ) ( ) ...

( )p p
p

a a

a

α ζ ζ ζ ζ
ζ ζ− −

−

− = − + − +

+ −
  

By the linearity of the trace and our above 
calculations we find that  / 0( (1 ))KTr paα ζ− =�  

We also have  

/ ( (1 )) ,KTr pα ζ− ∈� � so 0a ∈�   Next consider 

the algebraic integer  
1 3

0 1 2 2( ) ... ;p
pa a a aα ζ ζ ζ− −

−− = + + +  This is an 

algebraic integer since 1 1pζ ζ− −=  is. The same 
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argument as above shows that 1 ,a ∈�  and 

continuing in this way we find that all of the ia  

are in � . This completes the proof. 
  
Example 1.4   Let K = � , then the local ring 

( )p�  is simply the subring of �  of rational 

numbers with denominator relatively prime to 
p . Note that this ring   ( )p� is not the ring p� of 

p -adic integers; to get  p� one must complete 

( )p� . The usefulness of ,K pO  comes from the 

fact that it has a particularly simple ideal 
structure. Let abe any proper ideal of ,K pO  and 

consider the ideal Ka O∩  of .KO  We claim that 

,( ) ;K K pa a O O= ∩    That is, that a  is generated 

by the elements of a  in .Ka O∩  It is clear from 

the definition of an ideal that ,( ) .K K pa a O O⊇ ∩  

To prove the other inclusion, let α  be any 
element of a . Then we can write /α β γ=  

where KOβ ∈  and .pγ ∉  In particular, aβ ∈  

(since / aβ γ ∈  and a  is an ideal), so KOβ ∈  

and .pγ ∉  so .Ka Oβ ∈ ∩  Since ,1/ ,K pOγ ∈  

this implies that ,/ ( ) ,K K pa O Oα β γ= ∈ ∩  as 

claimed.We can use this fact to determine all of 
the ideals of , .K pO  Let a  be any ideal of ,K pO

and consider the ideal factorization of Ka O∩ in 

.KO  write it as n
Ka O p b∩ =  For some n  and 

some ideal ,b  relatively prime to .p  we claim 

first that , , .K p K pbO O=  We now find that 

  , , ,( ) n n
K K p K p K pa a O O p bO p O= ∩ = =   Since 

, .K pbO  Thus every ideal of ,K pO  has the form 

,
n

K pp O  for some ;n  it follows immediately that 

,K pO is noetherian. It is also now clear that 

,
n

K pp O is the unique non-zero prime ideal in 

,K pO . Furthermore, the inclusion 

, ,/K K p K pO O pOa  Since , ,K p KpO O p∩ =  this 

map is also surjection, since the residue class of 

,/ K pOα β ∈  (with KOα ∈  and pβ ∉ ) is the 

image of 1αβ −  in / ,K pO  which makes sense 

since β  is invertible in / .K pO  Thus the map is 

an isomorphism. In particular, it is now 
abundantly clear that every non-zero prime ideal 
of ,K pO is maximal.  To show that ,K pO is a 

Dedekind domain, it remains to show that it is 
integrally closed in K . So let Kγ ∈  be a root of 

a polynomial with coefficients in  , ;K pO  write 

this polynomial as  11 0

1 0

...m mm

m

x x
α α
β β

−−

−

+ + +  

With i KOα ∈  and .i K pOβ −∈  Set 

0 1 1... .mβ β β β −=  Multiplying by mβ  we find 

that βγ  is the root of a monic polynomial with 

coefficients in .KO  Thus ;KOβγ ∈  since ,pβ ∉  

we have ,/ K pOβγ β γ= ∈ . Thus  ,K pO is 

integrally close in .K   
 
COROLLARY 1.2.   Let K  be a number field 
of degree n  and let α  be in KO  then 

'
/ /( ) ( )K K KN O Nα α=� �   

PROOF.  We assume a bit more Galois theory 
than usual for this proof. Assume first that 

/K �  is Galois. Let σ  be an element of 
( / ).Gal K �  It is clear that 

/( ) / ( ) ;K KO O ασ σ α ≅  since ( ) ,K KO Oσ =  this 

shows that ' '
/ /( ( ) ) ( )K K K KN O N Oσ α α=� � . 

Taking the product over all ( / ),Gal Kσ ∈ �  we 

have ' '
/ / /( ( ) ) ( )n

K K K K KN N O N Oα α=� � �  Since 

/ ( )KN α�  is a rational integer and KO  is a free�

-module of rank ,n    

// ( )K K KO N Oα�   Will have order / ( ) ;n
KN α�  

therefore 
 '

/ / /( ( ) ) ( )n
K K K K KN N O N Oα α=� � �  
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This completes the proof.  In the general case, 
let L  be the Galois closure of K  and set 
[ : ] .L K m=   
 
 
3. Adaptive Clustering Self Organized Map 
 
The data segmentation can be cast as a constraint 
satisfaction problem by interpreting the process as one of 
the assigning labels to data elements based on some 
feature similarities and subject to certain spatial 
constraints. This paper presents a Self-organized feature-
map network (SOFM) for label assignment based only on 
feature similarities. The principal goal of the SOFM 
network developed by Kohonen [4] I to transform an 
incoming signal of arbitrary dimension into a one or two 
dimensional discrete map, and to perform this 
transformation adaptively in a topological order fashion. 
Many activation patterns are presented to the network, 
one at a time. Each input causes a corresponding localized 
group of neuron in the output of the network to be active. 
To ensure region connectivity, the clustering process was 
followed by a 3D connected component labeling 
algorithm to generate the final regions. This paper 
presents a novel adaptive clustering self-organized feature 
map that combines clustering and connected component 
labeling in one network. Spatial constraints are imposed 
on the clustering algorithm so that only data elements that 
are connected to each other are grouped together in a 
certain class. 
The network consists of K X 1 neurons, each representing 
one feature cluster, therefore the number of neurons is 
independent of the Data Size . Each neuron 

is connected to input data elements 

by a set of synaptic weights . Each neuron is 

associated with a collection of sets  which hold 
the coordinates of the contiguous data elements that 
caused the neuron to be activated . A data element 

 is added to a particular set if the data element 
is spatially connected to the set. 
 
 
Network Topology 
 

The network consist of   neurons, each representing 
one feature cluster, therefore the number of neurons is 
independent of the entire volume of data . Each neuron 

 is connected to input data elements 

by a set of synaptic weights  

 

 
 
where  represents the number of reduced feature as 
discussed in the previous section. Every neuron is also 

associated with a collection of sets which hold the 
coordinates of contiguous data elements that caused the 

neuron to be activated. Suppose that at iteration , data 

element represented by feature pattern 

 is presented to the network. 

The input to the  neuron is calculated as 
 

 
 
The competitive learning rule Winner-take –all (WTA) is 
used for updating the weights among the neuron. Only the 
neuron that receives the minimum input would be 

considered a the winner neuron, , as well as all the 

weights that lie in a neighborhood  are 
pulled into the direction of the input pattern. This gives 
the network learning rule 
 

 
and 
 

 

where  ( a number between 0 and 1) is the learning 

rate at iteration  . 
As shown in fig., the topological neighborhood 

 is defined as  
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Where is a spherical volume of radius  centered at 

. The radius  is selected fairly wide in the 

beginning and then permitted to shrink with iteration  . 
 

Topological neighborhood  . The 

neighborhood is a spherical volume of radius  

centered at .As mentioned earlier, each neuron 

is associated with a collection of sets which hold 
the coordinate of contiguous data elements that caused the 

neuron to be activated. A data element  is 
added to a particular set if that data element is spatially 

connected to the set. Each neuron , is 

initially associated with an empty set . Suppose that 

data element  activated neuron  which has 

sets. We define 

neighborhood constraint set of  denoted by 

 

 
 

A Data element is assigned to a region if 
the following constraint is satisfied 
 

 
If the previous condition fails for every set  

 a new set,  is 

created to hold . Therefore, each set contain 
only spatially connected data elements. After each 
iteration, if two sets belonging to the same neuron contain 
neighbor data elements, these sets are merged together. 
 
 
 

Network Convergence 
 
The energy function of the proposed Network is always 
convergent during the network evolution. For the 
traditional unsupervised competitive learning algorithm. 

The network minimizes an energy function  
given by  

 

where  is the number of sets associated with 

neuron  and  is the binary state of the set  
 

 

Taking the derivative with respect to  we have  

 
We can see that the weight updates are in the direction of 

negative descent of  

 
 
Therefore, the energy function is always non-increasing 
and the network I convergent. 
 
Selecting the number of the neurons 
 
In this section, we present a quantitative method for 
selecting the optimal number of neurons (Clusters) of the 
network. As shown in the previous section, the network 

partitions the volume yielding non-overlapping, 
connected regions 
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The segmentation results depend heavily on the selection 

of the number of clusters (neurons), . A criterion for 
the selection process can be stated as follow: 
 

Select the number of clusters, , such that the 
segmentation produces a partition that maximizes the 
homogeneity within segmented regions and the 
heterogeneity among different regions. 
 
Scatter matrices [5] is used in discriminant and cluster 
analysis. Assume that the d-dimensional vectors 

 have been 

separated into L regions. The patterns in the  group, 

 in number, are denoted by the vectors

. The scatter 

matrix for the group is given by 

 

where  is the vector of features means for the 

 group 

 

and is the mean for the  feature for the 
group  

 
The scatter matrix, S, for the pooled sample is defined as 

 
where the pooled mean, m, I given by  

 

The within-group scatter matrix , , is defined as the 
sum of the group scatter matrix 

 

Finally, the between-group scatter matrix, , is defined 
as the scatter matrix for the group means 

 
Thus, a clustering quality measure, CQ, that maximizes 
the between – class scatter with respect to the total scatter 
can be formulate as  
 

 

Where  is the trace of the matrix. Large values 

 suggest compact, well isolated clusters. The 
algorithm is performed for increasing values of K, starting 
with a small value ( for example K =2 ), and each time 

is calculated . We select K that produces the 

maximum . 
 
Adaptive Network Algorithm 
 
The essence of the Network algorithm is that it substitutes 
a simple geometric computation for more detailed 
properties of the Hebb – like rule and lateral interactions. 
There are five basic steps involved in the application of 
the algorithm after initialization, namely, sampling, 
similarity matching, weight updating, set assignment, and 
merging. These five steps are repeated until, for a selected 
number of neurons K , the map formation is complete. 
These steps are then repeated for different values of K 
until a maximum value for the clustering quality measure, 
CQ, is reached. 
 
 
Computational Complexity 
 
The complexity of the adaptive network is mainly 
determined by the size m of the reduced feature vector, 
the number of clusters K, and the volume ire. For an N X 
N X N volume, each iteration ha an order of complexity
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. Thus in order to reduce the complexity 
we can  
 

1. Reduce the size of the input volume by sampling 
in each direction to obtain an acceptable 
representation that preserves the volume 
properties at a higher scale. 

2. Reduce the number of features by the features 
selection procedure. 

 
Adaptive Clustering Self Organized map 
Algorithm 

 
To find the single best state sequence, q=(q1q2…qt), for 
the given observation sequence O=(o1o2…oT), we need to 
define the quantity δt(i) in below eq. 

 
 

 
δt(i) is the highest score along a single path, at time t, 
which accounts for the first t observations and ends in 
state i. By induction we have 

 
bj(ot+1) means. To retrieve the state sequence, we need to 
keep track of the argument that maximizes δt+1(j) in above 
eq. for each t and j. To store the argument, an array, ψt(j) 
is needed in the algorithm. The Viterbi search is as 
follows. 
 
1. Initialization 

 
 
2. Recursion 
 

 
3. Termination 

 
4. Path (state sequence) backtracking 

 
 
Step 1 : Select an initial value for the number of 
neurons K. 

Step 2 : Associate each neuron with an empty set 

 
Step 3 : Initialize the synaptic weights of the network 

, 

to small, different, random 
numbers at iteration k = 0 

Step 4 : Draw a sample  from the input 
set. 
Step 5 : Find the best – matching ( winning ) neuron 

at iteration k using the minimum distance 
Euclidean criterion 

 
Step 6 : Update the synaptic weight vectors using the 
update formula 

 
and  

 

Step 7 : Assign the input  to a neurodal set : 

if has only one empty set than 

otherwise  is assigned 

to a region if the following constraint is 
satisfied  

 
If the previous condition fails for every set 

 a new set, 

 is created to hold  

Step 8 : Merge Set  if they 
are spatially connected  
Step 9 : Increment k by 1, goto step 4 , and continue 

until the synaptic weights  reach their 
steady – state values.  

Step 10 : Calculate the clustering quality  . 

Increment K by 1 , goto  step 1 if  

        Step 11 : Select K that gives max  
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