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Abstract exist reasonably formal engineering practices and
In this paper a novel approach is described tooperidetection ~ procedures often supported by computer tools.
of Cancer Tissues by directly modeling the stafisti At the front end of the life cycle, the task ts

characteristics of the Cancer Cells. This appraafdws us to understand the customer's requirements. Most
represent Cancer Tissue Acquisitions in the formpatifern that requirements begin as natural language statements
will be analyzed and monitored using Adaptive $3l§anizing embedded within formal project specification docutse

Maps and Mathematical framework of Cancer Randossué f hundred f in | h Th d
Distributions and Localization of Cancer Cells.MIRlages are oiten hundreds of pages Iin length. ese documents

stacked and pattern recognition techniques are ieapptio normally represent the unresolved views of a grotip

determine Cancer Tissue Image Segmentation ancRaign. individuals and will, in most cases be fragmentary,

Keywords. Neural Networks, Cancer Tissue, Random inconsistent, and contradictory, seldom be prizedi and

Multi-Variable, Statistical Modeling. often be overstated, beyond actual needs. Theveris
little in the way of formal process and tool suggarthis

1. Introduction area. This is unfortunate, as the front end tasgsesent

the key leverage points in the entire design and
development process. Mistakes and misunderstandings
this stage may result in enormous economic anciegh

Growth of Cancer patients is increasing and matigipis problems later on in the life cycle.

diagnosed with Cancer at a Late Stage. So theaehigh
requirement of innovation in the field of Early Can .. . .
Detection. Cancer Screening can help to find tmeeain 2. Statistical modeling of Joint Cumulant
early stage of development and there are more elsanc ) .
better treatment results. However, some of the eranc 1h€ Independence among signals means there is no
types still don't have screening test available &e statistical dependence among them. For the 2ndrorde
populations with certain genetic code. statistics V\{lth Gaussian random variables, mqlepeoel

Cancer is a disease in which abnormal cells startMeans their mutual correlation is zero. For higbweter
dividing and there is no immunity defense to conthe ~ Statistics, the dependence is judged by joint camtyl
cell division and more likely invade other connecte Which means their mutual joint cumulants are zero.
tissue structure. Cancer cells can distributiomandom ~ Generally speaking, we deal with non-Gaussian rando
order through blood stream and lymph systems. Tagge Variables. So it is necessary to consider higheteror
more than 100 different types of cancer. statistics for independence [6-11]. _

For a set of n real random variable {x1, x2, ..., xtijeir

Requirements engineering is an attempt to define aloint moment of order r =k1 + k2 + ... + kn are givey
discipline for the management of requirements actoe ~ Papoulis [2]:
system development life cycle. In particular, the .
discipline addresses the stages preceding the rbette | K ] --[FI A ,';‘g[;lm‘,r,wh.”..f.un:|
understood, downstream activities of detailed desig  Mumf 6y FE g =] ﬁ
implementation, testing, and maintenance, for witligre LSl

=t =. =ity =l
where
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is there joint characteristic function. "
Another form of joint characteristic function isfoled as

the natural logarithm of
Do), 0,....0, ) ie.

LIk
o o...0, )= In[ﬁl){c.-” L7 y | -

Joint cumulants can be defined as the coefficianthe
Taylor series expansion of the above characteristic2d

.t

function about zero: anli) oz 2.2
. o =——= ¥ Cumlz;. 2 tj)——/14
[ | ) kn e ”Il .'IJ[('}| (.']'\.,,, {')” ] o ‘ \‘i.‘J oy |
(um .\'| B iy =1 |\| |\,, ] k] e um(ﬁ.zl.zl) r(um[f‘ Li22)
{~)| r!(-}n ‘\lumif1 fl /‘J i) tum[;l .f‘ 4, .f‘]—
0=t =...=ty =0 1<) f-“\'i K] o
The general relationship between moments of {x1,.x2 E[“ \I W \‘ l“ ¥ r\'J 24 LE“ Y |“ \"J [\u y I |\=. \h‘+
xn} and joint cumulants Cum([x1, x2, ...,Xn] of order I--J
nis given by Rosenblatt [3] y H“ vF »%J 2 {I“ i H] ll“ vf J h“ vf J
o=l o i<j
{'um|x|m.....xn\:E(—I]I P=10ES T xg g T e T N T
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where the summation extends over all partitions $21

L Sp).p=1 2 ...n of Wkt = w(k) + o Aw

the set of integers (1, 2, ..., n). To extract the j-th component, j > 1, we need toudate
From statistical point of view, for a set of n reahdom 3* —3 terms of joint cumulants.
variable {x1, x2, ..., xn}, if their mutual joint cunfants

up to order n are all zero, then, they can be @dim \We consider the following software engineering

independent. For calculation simplicity, we considely model field equations defined over an open

the 3rd and 4th orders. We define a penalty fundlp bounded pieceqof network and /or feature sgace
QOR". They describe the dynamics of the

mean Software models of each gf node

Separation matrix W can be obtain by minimizing hw populations.

Cum(x: X% 1]\

s iy

illi<

- |Gl 11| 2

~ Cumfx: )2 X
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dwtowst L w T d _3 - o -
regard to W. W is 2 n where wil (a+li)\/i (t,r)—ZJ'QJij (r,r)SIV, (t-g (r,r),r)=h, )ldr

through wn are row vectors. Gradient decent metisod = @
used in experiments. Independent components are +124r ), t=0,1<i <p,
extracted one by one. When extracting j-th compb®rgn V(LT =qt,r) tO[-T,0]

joint cumulants are calculated for all i and j canation
with i < j. We first assume input signals Y be velmied,
i.e. zero mean, unit variance. For non-whitenechaligy
simply do a PCA whitening. Consider the 1st commone We give an interpretation of the various

It can be extracted by maximizing its fourth order parameters and functions that appear inCf1s

cumulant, kurtosis [1], and the separating funct&on finite piece of nodes and/or feature space and is
wi ket 1) = ELY (Yow (k)y'] - 3 wyik) represented as an open bounded sd®%fThe
. . vector r and r represent points inQ . The
For the j-th component, j>1 function S:R- (0,1) is the normalized

sigmoid function:
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S(#= 1 5 generality, the propagation delays are not
(Z)—l+e-z @) assumed to be identical for all populations,

It describes the relation between the inputhence they are described by a matr{x,r)

software model rate; of populationi as a whose element; (r,r)is the propagation delay
;unctlon o1|‘ t\r}e_s\;)iw;rae( regug]e mvt\e/nt pct)t?/ntlal, between populatiorj at r and populatiori at
or example,V; =\ = 3, ( Y= Nl We note r. The reason for this assumption is that it is

the p- dimensional vectorV,,....V,).The p  still unclear from business requirements if

function @,i=1...p, represent the initial Propagation delays are independent of the
conditions, see below. We noig the p- populations. We assume for technical reasons

. . . —2 "
dimensional vecto(g,...,, ). The p function that 7 is continuous, that is OC°(Q", R”™).
Moreover software data indicate thats not a
symmetric function i.e.z; (r,r)# 1z, ( r), thus

_ _ oxt oxt no assumption is made about this symmetry
dimensional vector (I,™,...1 ;™). The pxp  njess otherwise stated. In order to compute the
matrix of functionsJ ={Jj}, ., , represents right-hand side of (1), we need to know the node
the connectivity between populationsand j, ~ Potential factorV on interval [-T,0]. The
see below. Thep real valuesh,i=1...p valuc_a of T is obtained by considering the

. oo maximal delay:
determine the threshold of activity for each _ -
population, that is, the value of the nodes Tm‘iyj(rr?%ﬁ)ri,j(r r) 3)
potential corresponding to 50% of the maximal
activity. The p real positive values

o,i=1..p, determine the slopes of the
sigmoids at the origin. Finally thep real

1>4i =1,...p, represent external factors from
other network areas. We note™ the p-

Hence we choosé =7,

A. Software Requirement Mathematical Framework

. _ ] A convenient functional setting for the non-
positive valuesl;,i =1,..p, determine the delayed software requirement model field

speed at which each requirement node potentiabquations is to use the spa€e=L*(Q,R")
decreases exponentially toward its real value,nich is a Hilbert space endowed with the usual

We also introduce the functio: R - R, inner product:

defined by p

S(9=[S0,( - B).... %,— M) and the \AR =;I9Vi(r)Ui(r)dr )
diagonal px p matrix L, =diag(l,...,|,).Is the  To give a meaning to (1), we defined the history
intrinsic dynamics of the software requirement space Cc=C’(-r,,0], F) with

model population given by the linear response

of functional and non functional requirement |4 =sunyr,qle€)F . which is the Banach

_ d _ d phase space associated with equation (3). Using
design pattern(aﬂi) is replaced b)(a-'-li)z the notation V,(8) =V(t+86),00[-71,,0], we
to use the alpha function response. We useVrite (1) as

(%Hi) for simplicity although our analysis JV(t)=-LV()+ L)+ F*(), 2)

applies to more general intrinsic software moule Vo =90C,
requirement dynamics. For the sake, of Where
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: - F / def 2 def
Ll _C - 1 B _ ‘N(t)HF 22% = R f(t’V)S—E :—5< 0
Q- IQJ(.,r)qo(r,—r(.,r )dr I 2

Is the linear continuous operator satisfying et us show that the open data routeFofof
| ]3] 22 sy - Notice that most of the center 0 and radiuR B, is stable under the
papers on this subject assuMeinfinite, hence  dynamics of equation. We know th¥it) is
requiring 7,,, = co. defined for allt=0s and thatf <0 on 0B,

the boundary oB;. We consider three cases for

Proposition 1.0 If the following software the initial conditionV,. If Mo <R and set
requirement model assumptions are satisfied. T =sypft |0s0[0,t],V(90 B}. Suppose that

1 JOL(QR™), TOR, thenV(T) is defined and belongs to

2. The external current ™ C°(R, F), By, the closure ofB,, becauseB, is closed, in

3. TDCO(E, fo"),su%—z T<T, effect to 0By, we also have
Then for any ¢C, there exists a unique E”\/”i lr= (T, )<-0<0 because
solution V OCY([0,%), F)n C°(-7,,,F) to At

3) V(T)U0B,. Thus we deduce that far>0 and

Notice that this result gives existence By ~ small enoughV/ (T +¢&) 0B, which contradicts

finite-time  explosion is impossible for this the definiton of T. ThusTOR and B, is
delayed differential equation. Nevertheless, agigp|e.
particular solution could grow indefinitely, we

now prove that this cannot happen. Because f<0 0B, V(0)J0B, implies
that ()t >0,V ()L B;. Finally we consider the

B. Boundedness of Solutions

A valid model of software neural networks case V(0)OCB, . Suppose that

requirement model should only feature bounded = d e
software node potentials. Or>0V(OUE;, then [it> O’a"\/”F <2,

. . thus |V (t)|_ is monotonically decreasing and
Theorem 1.0All the software integration model ! " ()”F I caly g

trajectories are ultimately bounded by the sameg€@ches the value of R in finite time whef()
constantR if 1 =max__. I *¢ i‘ <o reachesoB;. This contradicts our assumption.
F

tOR*
Proof :Let us defined f:RxC - R Thus 00T >0[V(T)U B,.

2
f(t,vt)dzef<_L0\4(o)+ LS(Y)+ FX‘(t),V(t)> =}dHVHF Proposition 1.1 : Let s andt be measured
F2 o software requirement functions onX- for

We notel =min,_, I, EcM, define

FeV) < -1V O+ plal] 3] + DIV AE) = [ _sdu )
Thus, if

Then? is a measure oM .
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J'X (s+1) d,u:J'X sdu+_|'X (87, (2) |z,-2|<d. Since f is uniformly continous,
Proof : If s and if E,E,.. are disjoint We havelima(d) =0 @
members ofM whose union isE, the countable From now on,0 will be fixed. We shall prove
additivity of 4 shows that that there is a software module API calls
polynomial P such that
AE) = Zaﬂ(Aﬂ B) = ZaZﬂ(Aﬂ E)
= |f(2)- A(3[<10,000w¢) (2 K) (2
—ZZa,u(A nE)= Zqo(Er) By (1), this proves the theorem. Our first
r=l i=1 objective is the construction of a function
Also,¢(¢) 0, so that? is not identicallyo . CD£C;(R2), such that for allz
Next, let s be as before, lef,....5, be the  |f(2)-d(2)|< w(d), (3)
distinct values of t, and leB. ={x ( ¥ =8} Iif 20(5
_ o S CTCTRSS 0

E,=AnB, the[ (s+du=(a+5)uE) A

__1709)0) L
and .[E,Sdu+.[q tdu=a u(E)+B u(E) D(2) = ”g = & ((=&+h), (B

Thus (2) holds withE, in place ofX . Since X Where X is the set of all points in the support
s the disjoint : union of the sets of ® whose distance from the software runtime

. : . parameter and dynamic software object binding
E; A<i<nl< jsm), the first half of our . ynement ofK does notd . (Thus X
proposition implies that (2) holds. contains no point which is “far withink .) We
construct ® as the convolution off with a

_ _ smoothing function A. Pua(r) =0 if r > 9, put
Theorem 1.1:1f K is a compact set in the plane

whose complement is connected, if is a 2

continuous complex function oK which is a(r)— (1——2 2 (O<sr<9), (6)
holomorphic in the interior of , and ¥ >0, o

. . And deflne
then there exists a polynomi@ such that A7) = 7
f(2)= P(2|<e forall K. If  the (=42 ( ) |
interior of K is empty, then part of the For all complexz. It is clear thatAsC (R) .
hypothesis is vacuously satisfied, and theWe claim that

conclusion holds for every ¢C(K). Note that J' A=1, 8)
K need to be connected.
Proof: By Tietze's theoremf can be extended J' dA=0, 9)

to a continuous function in the plane, with &
compact support. We fix one such extension and
denote it again by . For anyd >0, let w(J) m '64 -

be the supremum of the numbéfgz,) - f(2)|
Where z and z, are subject to the condition The constants are so adjusted in (6) that (8)

EJ 5 20)

holds. (Compute the integral in polar
coordinates), (9) holds simply becausehas
IJESPR
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compact support. To compute (10), expréas
in polar coordinates, and note t@géﬁo,

a%r =-a,

Now define
o@)=[[Hz-O) Ak d=[] Az¢) ) dd QD
R R

@) =[ anrarf" f(z-1e") B

=27tf (z)j:a(r)rdr: f(z)ﬁ A= (2 (15)
R?

For all ze G, we have now proved (3), (4),

_ and (5) The definition ofX shows thatX is
Since f and A have compact support, so does compact and thaX can be covered by finitely

®. Since many open discsD,,...,.D,, of radius 2J,

®(2)- (2 whose centers are not K. Since S°- K is
f f 15 connected, the center of eabh can be joined
_-L![ (2=0)= 121 &) & dy (12) to « by a polygonal path ir8* - K. It follows

And AZ)=0 if |Z| >3, (3) follows from (8). that eachD, contains a compact connected set

The difference quotients ofA converge E. of diameter at leas?d, so thatS® - is
boundedly to the corresponding software connected and so th#t n E =@ withr=20.
abstract layer partial derivatives, since
AsC(R) . Hence the last expression in (11)
may be differentiated under the integral sign,
and we obtain

There are functions gjeH(Sz—Er) and

constantsh, so that the inequalities.

(@)(2) = [[@A(z-¢) f(0) & & Q4.2 <%0, (16)
= j [ Hz-0)0m@) e Q¢ }z|< Tiogg a7
=[[lf(z=0) = fAQAD & & (139 Hold for 20 E and 0D, if
) QE.2=g(2+C-M §(¥ @8

The last equality depends on (9). Now (10) and| et  be the complement df, 0...0 E,. Then

(13) give (4). If we write (13) withh, and @
in place ofo®, we see thatb has continuous

partial derivatives, if we can show tha® =0
in G, whereG is the set of allzzK whose

distance from the complement &f exceedsd.
We shall do this by showing that

()= (2 (G, (14

Note thatof =0 in G, since f is holomorphic
there. Now ifzeG, then z-¢ is in the interior

Q is an open set which containkK. Put
X, =Xn D and
X, =(Xn D)=(X0..0 X_,), for 2< j <n,
Define

R{(,2=Q«(,2 (X, Q) (19)
And

1
F(2)=_J[Q®)RC. D& & (20)

(z € Q)

of K for all ¢ with [¢|<d. The mean value Since,

property for harmonic functions therefore gives,

by the first equation in (11),

138
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(18) shows thatF is a Software Quality of
Service (QoS) finite linear combination of the

functionsg; and g7. HenceFeH (Q). By (20),
(4), and (5) we have

F@-o2| <229 R¢. 2

-1 dE (zeQ) (22
z-¢

Observe that the inequalities (16) and (17) are

if {&X and

zeQ.now fixze Q., put { =z+p€°, and
estimate the integrand in (22) by (16)af< 49,
by (17) if 40 < p. The integral in (22) is then
seen to be less than the sum of

valid with R in place of Q

27TI (5—0+;}de p =808 (23

And

(" % Oom-zpd,o 2,000 . (24
Hence (22) yields

IF(2)-®(3|<6,00w0) (ze Q) (25
Since FeH(Q),KOQ, and S*-K is

connected, Runge’s theorem shows thatan
be uniformly approximated onK by
polynomials. Hence (3) and (25) show that (2)
can be satisfied. This completes the proof.

Lemma 1.0: Suppose software model
requirement feC (R?), the space of all

continuously differentiable functions in the
plane, with compact support. Put

@

Then the foIIowing “Cauchy formula” holds:

f(2)=- ” (of )(Z)dfch
(Z—f+v7) (2)

139

Proof: This may be deduced from Green’s
theorem. However, here is a simple direct proof:

Putg(r,8)=f (z+r€’), r>0,8 real
If ¢ =z+ré’ the chain rule gives

1,0 . i0
of =—d’| —+—— |¢(1,6 3
(0f)({) > [ar rae}p( ) 3
The right side of (2) is therefore equal to the
limit, as € - 0, of

NNE @

jdedr
or r odd

For eachr >0,¢ is periodic ing, with period
271. The integral odg /086 is therefore 0, and
(4) becomes

—i “"dg j a¢d _—j é(e,6)d6 )
As € - 0,¢(,0) > f(z) uniformly.

This gives (2)

If X“Oa and XPOK[X,..X] ., then

XX =X"0a, and soA satisfies the
condition (0) . Conversely,

Qe XN 4, X)=> "¢ d X ( finite sung
oA pgu" a.p

and so if A satisfies([) , then the subspace

generated by the monomiak?,alda, is an
ideal. The proposition gives a classification of
the monomial ideals ifk[ X,,...X;]: they are in
one to one correspondence with the subgets
of 0" satisfying () . For example, the

monomial ideals irk[ X] are exactly the ideals
(X"), n=1, and the zero ideal (corresponding
to the empty sed). We write (X |a 0 A) for

the ideal corresponding toA (subspace
generated by thX?,agJa).
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LEMMA 1.1. Let S be a Software non precisely,a=(g,...,d ) whereg,,...,g.are any
functional requirement subset of'. The ideal elements ofa whose leading terms generate
a generated byX?,aS is the monomial LT(a)
ideal corresponding to PROOF. Let f Oa. On applying the division
. algorithm we find
A={p0O0"|f-aO0", somexl ’
{ ST }S . f=ag+.+ag+r, a, 10K X,.... X]
Thus, a monomial is ira if and only if it is . : .
, Where either =0 or no monomial occurring

divisible by one of thex ,a'D.|S. in it is divisible by any LT(g) . But
PROOF. Clearly A satisfies (0) , and

s . r=f->agOa and therefore
aD<X |0 A> . Conversely, if BOA, then LT()OLT(@) = (LT(Q).... LT(q)) . implies
p-abi" for some aOS , and that every monomial occurring inis divisible

X# = XX’ “0a. The last statement follows by one in LT(g) . Thus r=0 , and
from the fact thatX” | X” = B-a00". Let  gO(g,...q).

AOL " satisfy(0) . From the geometry df, it

is clear that there is a finite set of elementsDEFINITION 1.1. _ A_ finite  subset
s={a,..a} of A such that S={al...g} of an ideala is a standard (
A={,[>’DD "|B-a, 002, somea, O $ (The  (Grobne bases for a if
a's are the corners ofA ) Moreover, (LT(g),...,LT(g))= LT(3. In other words, S

o« _ _ is a standard basis if the leading term of every
a:<X laU A> is generated by the monomials element ofais divisible by at least one of the
X%, a 0S. leading terms of they, .

DEFINITION 1.0. For a nonzero idea in THEOREM 1.3 The ring K[X,..., X] is
K[X,....X,] , we let (LT(a) be the ideal Noetherian i.e., every ideal is finitely generated.

generated by _ o _
{LT(f)I fDa} PROOF. For n=1, K[ X] is a principal ideal

domain, which means that every ideal is

. . generated by single element. We shall prove the
LEMMA 1.2 Let a be a nonzero ideal in theorem by induction om . Note that the

K[X,,....X,] ; then (LT(a)) is a monomial obvious mapk[X,,..X_J[X] - K X... X] is

ideal, and it equals(LT(g)...,LT(g,)) for  an isomorphism — this simply says that every

someg,,...,g, Ja. polynomial f in n variables X,,...X, can be

PROOF. Since(LT(a)) can also be described expressed uniquely as a polynomialXn with

as the ideal generated by the leading monomialgqefficients ink[ X,,..., X, I:

(rather than the leading terms) of elements of ,
Py X)) = 8 (X X ) X+ o @ (X%

THEOREM 1.2 Every ideal a in

k[X Xn] is finitely generated; more Thus the next lemma will complete the proof
l!"'l )
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LEMMA 1.3. If Ais Noetherian, then so also and so the polynomialg,,...,g,,,, generatea .

is A X]
PROOF. For a polynomial

f(X)=gX'+aX*'+.+a, al A az0,

r is called the degree of , and g, is its

leading coefficient. We call 0 the leading

coefficient of the polynomial O. Leta be

an ideal inA X]. The leading coefficients of

the polynomials ina form an ideala in A,
and sinceA is Noetherian,a will be finitely
generated. Letg,,...,d, be elements ofa
whose leading coefficients generate and let
r be the maximum degree af, . Now let
f Oa, and supposef has degrees>r, say,

f zaX®+... Thenala , and so we can write

a=3ha, b0 A
a =leading coefficient of ;g
Now

f->hgX ", r=deg(@) has degree
<deg(f ). By continuing in this way, we find

that f =, mod(@@,,..0,,, With f, a
polynomial of degree¢ <r For eachd <r, let

a, be the subset of consisting of 0 and the

leading coefficients of all polynomials ia of
degreed; it is again an ideal in A. Let

Jg1r+- 90 m D€ POlynomials of degree whose

One of the great successes of category theory in
computer science has been the development of a
“unified theory” of the constructions underlying
denotational semantics. In the untyped-
calculus, any term may appear in the function
position of an application. This means that a
model D of theA -calculus must have the
property that given a termt whose
interpretation isd 0 D, Also, the interpretation

of a functional abstraction likdx. X is most
conveniently defined as a function frobito D

, Which must then be regarded as an element of

D. Let ¢/:[D - D] - D be the function that
picks out elements dD to represent elements
of [D~ D] and ¢:D —~[D - D] be the
function that maps elements Dfto functions of
D. Sincey(f) is intended to represent the
function f as an element db, it makes sense
to require that @(f))=1f, that s,
Yoy=id,  Furthermore, we often want to
view every element oD as representing some

function fromD to D and require that elements
representing the same function be equal — that is

W(g(d))=d

or

Yyop=id,

The latter condition is called extensionality.
These conditions together imply th@andy

leading coefficients generagg . Then the same aré inverses--- that id) is isomorphic to the

argument as above shows that any polynomia

f, in a of degree d can be written

fg = fo mod@y;.--Oqr ) With fy, of

degree <d-1 . On applying this remark
repeatedly we find that

fi D(gr—l,l""gr—lmr,l v+ o1+ Yom, . Hence

ft D(g17'"gmgr—1,l""gr—lmr,l 1101 !---’gom,
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space of functions fror® to D that can be the
Interpretations of functional abstractions:

D O[D - D] .Let us suppose we are working
with the untyped A -calculus, we need a
solution ot the equationD OA+[D - DJ,

where A is some predetermined domain
containing interpretations for elements Gf
Each element oD corresponds to either an

element ofA or an element oﬁD . D], with a
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tag. This equation can be solved by finding leastsometimes referred to as-colim its. Dually,
fixed points of the function an fP-chain in K is a diagram of the
F(X)= A+[ X » X] from domains to domains following form:

- that is, finding domainsX such that ,_ k D h D "
X OA+[X - X], and such that for any A

domainY also satisfying this equation, there is Of an & —chain A is a K-object X and a
an embedding ok to Y --- a pair of maps collection ofK-arrows{ : D, [i= @ such that

A cone u: X - A

X Df Y for alli20, 4 =foy,,. An «f-limit of an

R o —chain A is a coneu: X - A with the
SL:fh tha.t property that ifv: X' - Ais also a cone, then
f o f=id, there exists a unique mediating arrow
fofROid, k: X - X such that for alli=0,0k=v, .

Where f [0 g means thatf approximates (in We write U, (or just ) for the distinguish

some ordering representing their information jnitial object ofK, when it has one, and— A

content. The key shift of perspective from the for the unique arrow fronil to eachK-object
domain-theoretic to the more general category-A. |t is also convenient to write

theoretic approach lies in consideriagiot as a . i f,
function on domains, but as fanctor on a A =D, _,D,_,....to denote all ofA except

category of domains. Instead of a least fixed p 5,9 f,. By analogy,s is {/1 I 2]}_ For

point of the functionF. . )
the images ofA and x4 under F we write
F(f,) F(f) F(f2)

Definition 1.3: Let K be a category and
o1y F(8)=F(D,) _, F(D) _, F(D,) _, .....

F:K - K as a functor. A fixed point df is a
pair (Aa), where A is aK-object and andF(u)={F(x)|i=0

a:F(A) -~ Alis an isomorphism. A prefixed \ve write F' for thei-fold iterated composition
point of F is a pair (A,a), where A iskaobject of F - that is,
and a is any arrow from F(A) to A Fo(f)=f,FY(f)=F(f),F2(f)=F(F(f))

Definition 1.4 : An w-chain in a categoryK

is a diagram of the following form:
a=p,,D, D, _

Recall that a cocong of an w—chainA is a
K-object X and a collection of K-arrows
{#:D - X|i=@ such thaty =y 01 for
all i=0. We sometimes writg/:A -~ X as a
reminder of the arrangement ofu's

components Similarly, a colimjz:A - Xis a
cocone with the property that if:A — X' is

also a cocone then there exists a unique
mediating arrowk: X — X such that for all

120,,v, =koy . Colimits of w-chains are
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,etc. With these definitions we can state that
every monitonic function on a complete lattice
has a least fixed point:

Lemma 1.4.Let K be a category with initial
object O and let F:K - K be a functor.
Define thew—chainA by

10-F(0) F(0-F(D) F2(10- F(0)
A=0 , F(O o F(O
If both #:A - D and F(u):F(A) —» F(D) are
colimits, then (D,d) is an intial F-algebra, where
d:F(D) - D is the mediating arrow from

F(u) to the coconeu”
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Theorem 1.4 Let a DAG G given in which each ND, ={x1, xz,,,__)(k_l}
node is a random variable, and let a discrete
conditional probability distribution of each node Let
given values of its parents in G be specified. D, :{xk+l,xk+2,....xr}
Then the product of these conditional ¢q0ws Z
distributions yields a joint probability d
distribution P of the variables, and (G,P)
satisfies the Markov condition.
We define them™ cyclotomic field to be the

Proof. Order the nodes according to an ancestrakield Q[x]/(cbm(x)) Where @ _(X) is the m"
ordering. Let X, X,,....... X, be the resultant

cyclotomic polynomial.Q| x|/ (® ®_(X
ordering. Next define. y poly Q[X|/ (@, (X)) P,(x)

has degreeg(m) over Q since ® (X) has

P(%, %,...%)= Rx|pa) Bx | Pa). degreeg(m). The roots of® (X) are just the

P(% | p3) x| pa), primitive m" roots of unity, so the complex

Where PAis the set of parents o, of in Gand  €mbeddings ofQ[ x|/ (®,,(¥) are simply the

P(x| pa) is the specified conditional #(m)maps

probability distribution. First we show this does i :Q[X|/ (® (X)) C,

indeed yield a joint probability distribution. 1<Kk<m (k m=1, wher

Clearly, 0<sP(X, X,,...% )< 1for all values of the 0. (X) =&

variables. Therefore, to show we have a joint _ - " o
¢,,being our fixed choice of primitiven" root

distribution, as the variables range through all
their possible values, is equal to one. To thatof unity. Note that&* Q(¢,) for every k; it

end, Specified conditional distributions are the — Y £K :
conditional distributions they notationally follows  that Q(¢,) = Q<) for all k relatively
represent in the joint distribution. Finally, we Prime tom. In particular, the images of th
show the Markov condition is satisfied. To do ¢gincide, soQ[x]/(dJm(x)) is Galois overQ.
this, we need show fdr< k < n that

P(pa)#0,if P(nd | pg)# 0
whenever and R x| pa)Z0

This means that we can writ€(¢é,) for

Q[ X/ (®,,(¥) without much fear of ambiguity;

then R x| n¢, pa)= P X pad we will do so from now on, the identification
. * PR & ’ being &, — x.One advantage of this is that one
Where ND,is the set of nondescendents X can easily talk about cyclotomic fields being

of in G. SincePA [0 ND,, we need only show extensions of one another,or intersections or

P(x |nd)= R x| pa). First for a givenk, compositums; all of these things take place
order the nodes so that all and Onlyconsidering them as subfield & We now

) investigate some basic properties of cyclotomic
nondgscendents Ofx_k precgde X In the  fields. The first issue is whether or not they are
ordering. Note that this ordering dependskan gl distinct; to determine this, we need to know

whereas the ordering in the first part of the hich roots of unity lie inQ(&,) .Note, for

proof does not. Clearly then o ) "
example, that ifmis odd, then-¢_is a 2m" root

of unity. We will show that this is the only way
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in which one can obtain any nam®roots of
unity.

LEMMA 1.5 If mdividesn, thenQ(¢,) is
contained inQ(¢,)

PROOF. Sincef%“ =&, we haveé, U0Q(<,),
so the result is clear

LEMMA 1.6 Ifmand nare relatively prime,

then

Qi ¢10) = QA )

and

Q(¢m) N Q¢ =Q

(Recall the Q(&,,,¢,) is the compositum of

Q(¢,) and Q<) )

PROOF. One checks easily thd ¢, is a
primitive mri"root of unity, so that

Qlémn) U QA< )
[Q( &) Q[ : A QAé,: 4
=p(m)p(n) = p(mn),

Since [Q(£,,,): Q] =#(mn; this implies that

Q¢ ¢n)= Q¢ ) We know thatQ(¢,,¢,) has

degreeg(mn) over Q, so we must have

[Q(6 &) : QW] =8N

and

[QU& €0): QD] = p(m)

[Q,): QA& N AE)] = p(m
And thus thatQ(¢&,) n (¢,) =Q

PROPOSITION 1.2 For angnand n

Q&) =Q(, )
And
Q&) N QASH) = QA y):
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here[m, n and (m, n) denote the least common

multiple and the greatest common divisornof
and n, respectively.

PROOF.  Writem= ... and g .... g
where the p are distinct primes. (We allow
g or fto be zero)
U&E)=QAEL)QAE, ) QE )
and
QA&E)=QE,)QE,L)-QE L)
Thus
Q&) =QAE L) Q€ RE,, )-QE |
=QU6,)QE,)- QAL )QE, L)
= Q(‘tplww) ...... prlmax@_fk )

= Q(fplmaX(q,fl ) plmHX(ek ik ))

An entirely similar computation shows that

Q&) N QS) = A(my)

Mutual information measures the information
transferred wherx is sent andy, is received,
and is defined as
PCYy)

I (x,Y,)=log,—~— bits @

* P(X)
In a noise-free channekach Yy is uniquely
connected to the correspondirg, and so they

constitute an input —output paifx,y) for
which

P(%j):l and I(x, X)ZIOQZ%X) bits; that
is, the transferred information is equal to the
self-information that corresponds to the input
In a very noisy channel, the outpyand input
x would be completely uncorrelated, and so
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p(/) P(x) and alsol(x,y,)=0;that is, Where H(A) Z P(x, ¥;)log, ————

there is no transference of information. In A,
general, a given channel will operate betweenusually called the equivocation. In a sense, the
these two extremes. The mutual information isequivocation can be seen as the information lost
defined between the input and the output of ain the noisy channel, and is a function of the
given channel. An average of the calculation ofbackward  conditional  probability.  The

the mutual information for all input-output pairs gpservation of an output symbagl, provides
of a given channel is the average mutual
information: H(X)—H(%) bits of information. This

is

P(>§) channelMutual Information: PropertieSince

Yi
per symbol . This calculation is done over the PO yJ)P(yJ) - /) Y

input and output alphabets. The average mutuairhe mutual information fits the condition
information. The following expressions are |(X,Y)= I(Y, X)

useful for modifying the mutual information Apnq by interchanging input and output it is also

bits difference is the mutual information of the
1(X,Y)= ZF’(x y)I(x, y)= Z R X y)log,

expression: true that
POx. )= RO )R = R4) R A 104,Y) = HOY = HY%%)
J
y Where
P(y) =X U4 R
: X ' H
. (Y)= Z R(y)log, -— P( )
P(X)=Z P(A‘)P(){) This Iast entropy is usually called the noise
' : entropy. Thus, the information transferred
H(X.Y) =2 P(x, ) through the channel is the difference between
" the output entropy and the noise entropy.
ZP( lo Alternatively, it can be said that the channel
- X %108 50 p( ) mutual information is the difference between the
number of bits needed for determining a given
input symbol before knowing the corresponding
_z P(x, y,)log, _1 output symbol, and the number of bits needed

) for determining a given input symbol after
j knowing the corresponding output symbol

= - H(X
men S0 5 [
m P(x%) As the channel mutual information expression is
1 a difference between two quantities, it seems
:Z{P(%_)P(yj)}logzp— that this parameter can adopt negative values.
i . (x) However, and is spite of the fact that for some
ZP(XNng 1 _ H(X) y;»H(X7y;) can be larger thahl (X), this is
not possible for the average value calculated
1(X,Y)=H(X)- H()%) over all the outputs:
IJESPR
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p(/) density functions exhibit no dependence on the
zpog y)log, z X, y)lo log, 8 %) states, let nbe a fixed positive integer, and

¥ P(x) R'y) p(X) an arbitrary probability density function on
Then

Euclidean n-space. p(y|x) for the density

POOP(Y) _ B, (Y- ¥, |%,..% Jand F for F, For any

—1(X,Y) =2, P(X, ¥) <
ZJ: " P(X,Y)
Because this expression is of the form
M
Q
Plog,(=)<0
; i QZ(F?)
The above expression can be applied due to th 1
N, h that
factor P(x) P(y;), which is the product of two ?u " _)aS-tJC )2 O As N )
probabilities, so that it behaves as the quantity P{( K '}‘ I? pf_ (2)
Q , which in this expression is a dummy Where

variable that fits the conditio} Q <1.ltcan  px vo A=[ . JHxyddy  px} eXEY)

be concluded that the average mutualand

information is a non-negative number. It can P{XOF} =] ..J p(ydx
also be equal to zero, when the input and th _ @

output are independent of each other. A relateg:)rOOf' A sequencec” [JF such that
entropy called the joint entropy is defined as P{YD A | X= *D} 21-¢

real number a, let

{(xy) Iogp({')) } o)

Then for each positive integer there is a code

H(X,Y)= ZP(x y)log, ——— P(X w where A={ y(x Y N
Choose the decoding sBito be A, . Havin
-3 PO o, ;?)P(y)') k g sB o 9
E . X chosen x,........ x*? and B,...,.B_, , select
+Z P(x, y,)logzipmp(yj) x O F such that

k-1
P{YD Aw -lJ BI X= %’}21—5;
i=1

Theorem 1.5: Entropies of the binary erasure K1
channel (BEC) The BEC is defined with an S€tB = Aw ~J_, B, If the process does not
alphabet of two inputs and three outputs, withterminate in a finite number of steps, then the

symbol probabilities. N sequences x"” and  decoding  sets
P(x)=a and R ¥)=1-a, and transition B =12 ..u form the desired code. Thus
probabilities assume that the process terminates afseps.
P()%fl‘p and RY2/)=0, (Conceivablyt=0). We will showt=u by
and P(y3xl):0 showing that
i 01 et (X V0 A+ RO F . we
v proceed as follows.
and P(/) 1-

Lemma 1.7.Given an arbitrary restricted time-
discrete, amplitude-continuous channel whose

restrictions are determined by sé{sand whose
IJESPR
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B:Utjlej. (If t=0, take B=g). The
P{(X,1)O A= I i x Y dxdy

(x,y)JA

t
) =[p(9 [ Byl ¥ dydx
yaA

X

L

=[P | wylRdyde| X

X yOBN A X

C. Algorithms
Ideals. Let A be aring. Recall that adeal a

in A is a subset such that a is subgroup of A

regarded as a group under addition;
allardA=rald A

The ideal generated by a subsebdfSA is the
intersection of all ideals A containing a ----igt

maximalif m#| A and there does not exist an
ideal n contained strictly betweemand A .
Thus mis maximal if and only ifA/ m has no
proper nonzero ideals, and so is a field. Note
that m maximal = mprime. The ideals of
Ax B are all of the formaxb, with a andb
ideals inA andB. To see this, note that ¢ is
an ideal in AxB and (a,bj0c, then
(a,0)=(a,b)(1,0) c and (0,b) = (a,b)(0,1)I c.
This shows that = ax b with

a={al(a b0 c some B }
and

b={b|(abdc some & k

Let A be a ring. AnA-algebra is a ringB
together with a homomorphismg :A - B. A

homomorphismof A -algebra B - C is a

easy to verify that this is in fact an ideal, and homomorphism of ringgp:B - C such that

that it consist of all finite sums of the form
Y'rs with r0A,§0S. WhenS={s,....., §}

, we shall write(s,.....,S,) for the ideal it

generates.
Let a and b be ideals in A. The set

{a+bladabd B is an ideal, denoted by
a+b. The ideal generated b{fab| adl a b1 B

is denoted byab. Note thatab0 an b. Clearly
ab consists of all finite sumsZa,.bi with
aUa and hOb, and if a=(4q,...,8,) and

b=(h,...h), then ab=(ah,...ab,...,a h)
.Let a be an ideal of A. The set of cosetsaof
in A forms a ringA/a, anda+ a+ais a
homomorphism @:A—~ Ala . The map

¢(iz(@)=i.(a) for all ablA. An A-algebra
Bis said to bdinitely generated or of finite-
typeover A) if there exist elements,...,x, 1 B
such that every element &can be expressed
as a polynomial in the with coefficients in
i(A) , ie., such that the homomorphism
Al X,...X] - B sending X; to X

surjective. A ring homomorphismA - B is
finite, and B is finitely generated as an A-
module. Letk be a field, and letAbe ak -
algebra. If120in A, then the mak —» Ais
injective, we can identifyk with its image, i.e.,
we can regark as a subring oA . If 1=0 in a
ring R, the R is the zero ring, i.eR={0} .

Polynomial rings. Let k be a field. A

is

b ¢_1(b) is a one to one correspondence monomialin X,,...,X is an expression of the

between the ideals oA/ a and the ideals oA
containinga An ideal p if prime if p# A and
abld p= a por bOp. Thus p is prime if
and only if A/ p is nonzero and has the
property that ab=0, bz0= a=0, ie.,
A/ pis an integral domain. An ideain is

147

form X2.. X},
of the monomial is) a . We sometimes
abbreviate it byX“, a =(a,...,,)00" The

a0 N . Thetotal degree

elements of the polynomial ring[X,,...,X ]
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are finite sums %3 =>h and in a-pB the right most
ani....% XX G.aUk a0l nonzero entry is negative. For example:

With the obvious notions of equality, addition X*y*Z"> X°Y® Z (total degree greater)
and multiplication. Thus the monomials from XY5 72> X4V A ¥ Y2 X Y:

basis for k[ Xiyeens Xn] as ak -vector space. The
ring K[ X,,..., X,]is an integral domain, and the Orderings on K[ X,,...X,] . Fix an ordering on
only units in it are the nonzero constant the monomials ink[X Xn] Then we can
polynomials. A polynomial f(X,,...,X,) is '

irreducible if it is nonconstant and has only the write .an elementf of k[>_(1’"_'x”] n-a _
obvious factorizations, i.ef =gh= gor h is  canonical fashion, by re-ordering its elements in

decreasing order. For example, we would write
f =4XY?Z+4Z-5X+7TX Z

as

f=-BX3+TX?Z*+AXY' Z+ 4Z (le)

constant. Division in k[X] . The division

algorithm allows us to divide a nonzero
polynomial into another: letf and g be

polynomials in k[ X] with g#0; then there

exist unique polynomials;,r Ok[ X] such that  f =4xy2z+7 X2 Z-5)¢+ 42 (grevie)

f=qg+r with eitherr =0 or degr < degg. et > a X“OK X,.., %] , in decreasing
Moreover, there is an algorithm for deciding order:

whether f [0(g) , namely, findr and check foa X%+ X4+ a.>a > —
whether it is zero. Moreover, the Euclidean %o n o~ Trm o
algorithm allows to pass from finite set of

generators for an ideal ik[X] to a single
generator by successively replacing each pair of

Then we define.

f

Themultidegreeof * to be multdegf )= ay;

generators with their greatest common divisor. . Theleading coefficient off to beLC( f )=a,
(Pure) _|eXi009raphiC ordering (ley. Here «  The leading monomial of fto be LM( f ) =
monomials are ordered by X % -

lexicographic(dictionary) order. More precisely, ’ f ¢ .
et a=(a,.a) and B=(h,.h) be two  * Theleadingtemof' tobelT(')=a, X"

elements of]"; then o> and X7 > X* For the polynomial f=4XY*Z+..., the
(lexicographic ordering) if, in the vector multidegree is (1,2,1), the leading coefficient is
difference o - B00 , the left most nonzero 4, the leading monomial iXY?Z, and the
entry is positive. For example, leading term is 4XY?Z . The division
XY?>¥Z7Z, X¥Z> XY . Note that algorithm in k[X,..X]. Fix a monomial

this isn’t quite how the dictionary would order qgering inj 2. Suppose given a polynomidl
them: it would putXXXYYZZZz:z after XXXYYZ

. Graded reverse lexicographic order (grevlex). and an ordered s¢g,,...g) of polynomials; the
Here monomials are ordered by total degreedivision algorithm then constructs polynomials
with ties broken by reverse lexicographic &,..a andr such thatf =a g +..+ag+r
ordering. Thus,a>p if > a>>h , or  Where eitherr =0 or no monomial inr is
divisible by any ofLT(g,),...,LT(g) Step 1:
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If LT(g)|LT(f), divide g, into f to get If a permutation is chosen uniformly and at
LT(f) random from then! possible permutations in

T(g) OK Xos X] S,, then the count€(” of cycles of lengthj
If LT(g)|LT(H , repeat the process unti are dependent random variables. The joint

distribution of Cc™ =(c”,...,.c{") follows
f=ag+ 1 (different3a) with LT(f,) not from Cauchy’s formula,(;:lnd is ginve)n by
divisible by LT(g,) . Now divide g, into f, 1 0 1,1
and so on, untilf =ag,+..+ag+ ¥ With e =d={ Nn Ct:l{jz_; 5= '}D(jwcj!’ @0
LT(r,) not divisible by anyLT(g),...LT(q)
Step 2:Rewriter, =LT (r,) +r,, and repeat Step

1 with r, for f : L
Lemmal.7For nonnegative integers
f=q0+..+aq+ LT([)+r (differenta's m_m,

) Monomial ideals. In general, an ideah will N e N2 AN EN
contain a polynomial without containing the E[l:](cj ) J]: H(Jj 1{; ijsn} (1.4)

individual terms of the polynomial; for example,
the ideala=(Y*— X°) containsY? - X*but not

f=ag+h g=

for cO0 .

Proof. This can be established directly by
exploiting  cancellation of the form

Y? or X ¢"'/¢ =1/(g-m)! whenc,2m, which

DEFINITION 1.5. An ideala is monomialif ~ OCCuUrs between the ingredients in Cauchy’s
ZC X7 a= X7 3 formula and the falling factorials in the

moments. Writem= im . Then, with the
all a with c, #0. z m
PROPOSITION 1.3. Letbe amonomial ideal,
and IetA={a| X Da} . Then A satisfies the

condition aOA LO0"=a+p0 O
And a is the k -subspace ofk[X,,...,X|] E[H(Cf”))[m']jzz AC” = ¢ U( o™

first sum indexed by =(c,...¢,)00" and the
last sum indexed byd =(d,,...,d, )007 via the
correspondence; = ¢, - m, we have

generated by theX”,a 0 A. Conversely, ofA

_ o] ()™
is a subset of " satisfying (D), then the k- ‘ccjzmz;ma” jl{g Ic; —”}D jijcj!
subspace a of k|X,..., enerated b n n n
P 6] g ! ik Zl{zjdj:”‘m}”.d 5
{X”|aDA}isamonomiaI ideal. I 3 AT =] dy)!

PROOF. It is clear from its definition that a This last sum simplifies to the indicator
monomial ideala is the k -subspace of 1(msn), corresponding to the fact that if

k[X1Xn] n-mz0, then d; =0 for j>n-m, and a
generated by the set of monomials it contains. Ifrandom permutation ir§_, must have some
X“0a (X OKX,..X] cycle structure(d,,...,d_.). The moments of
C™ follow immediately as
E(CM) = "1 jr<n} (1.2)
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We note for future reference that (1.4) can alsoproperties, and the-fold intersection is empty.
be written in the form Thus

Em(qm)m]: E[ﬂ 4}1{2 m < n} w3 S =(n- )!(ri<n)

[1i] _ 1
———=1(rj =n)-
rin! j'r!

Where the Z, are independent Poisson- X

distribution random variables that
E(Z)=1/]

satisfy Finally, the inclusion-exclusion series for the
number of permutations having exactly
properties is
The marginal distribution of cycle counts K+
provides a formula for the joint distribution of Z(—l)'( | JS‘H’
120
] _ _ ~ Which simplifies to (1.1) Returning to the
C/ using a combinatorial approach combined griginal hat-check problem, we substitute j=1 in

the cycle count<?, we find the distribution of

with the inclusion-exclusion formula. (1.1) to obtain the distribution of the number of
fixed points of a random permutation. For
Lemma 1.8. Forl<j<n, k=0,1,...n.
-k [n/j]-k -l n-k
AC=R=4 X (W A PG =K = 3 (D', 1.2)
Proof. Consider the selt of all possible o " ) _
cycles of length j, formed with elements and the moments o, follow from (1.2) with

chosen from{1,2,..n} , so that|l|=n""". For ) =1. In particular, for nz2, the mean and
variance ofC™ are both equal to 1. The joint

each alll, consider the “property’G, of
distribution of (C["”,...,Ci") for anyl<bs<n

having a; that is, G, is the set of permutations _ ) _
has an expression similar to (1.7); this too can

7§, such thata is one of the cycles oft.  pe derived by inclusion-exclusion. For any
We then haveG,|=(n- j)!, since the elements c=(q,...,g )00" with m=>ig,
of {1,2,..n} not in @ must be permuted P[(C",..,G")=d

among themselves. To use the inclusion- b 1\ 1 RN ]

exclusion formula we need to calculate the term= <[] (-j — 2 D (—j = @3
o e =1\ G owin EANPEN

S, which is the sum of the probabilities of the il <n-m

r -fold intersection of properties, summing over
all sets ofr distinct properties. There are two The joint moments of the firsb counts

cases to consider. If theproperties are indexed c™,....C™" can be obtained directly from (1.2)
by r cycles having no elements in common,

then the intersection specifies hayelements
are moved by the permutation, and there are L
(n—1)10i <n) permutations in the The limit distribution of cycle counts

_ ) - It follows immediately from Lemma 1.2 that for
intersection. There aren™/(j'r!) such  gzch fixed J- as no o,

intersections. For the other case, some two ko
distinct properties name some element in P[Cj("):lq_,J—lél", k=0,1,2,...,
common, so no permutation can have both these k!

and (1.3) by settingm,,, =...=m,=0
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So that C” converges in distribution to a
random variable Z; having a Poisson
distribution with mearl/ j; we use the notation
C" -, Z where Z, 0 R(1/j) to describe

this. Infact, the limit random variables are
independent.

Theorem 1.6 The process of cycle counts

Establish the asymptotics & A (C™) | under
conditions(A,) and(B,,), where

A= N {c=d,

I<isn r+l<js<r
and ¢, =(r'/r,)-1=0("°) as i - w, for
someg >0. We start with the expression

converges in distribution to a Poisson process ofpy p (Y] = P[Ton(Z) = 1

0 with intensity j . That is, asn — o,
C.CP,) =g (2 20) .1
Where the Z;,j=1,2,.. are independent
Poisson-distributed random variables with
1
E(Zj):

Proof. To establish the converges in
distribution one shows that for each fixbé 1,

as n - oo,

P(C",...G")=d > A(Z... Z)= ¢

Error rates

The proof of Theorem says nothing about the
rate of convergence. Elementary analysis can b

used to estimate this rate whén=1. Using

properties of alternating series with decreasing

terms, fork =0,1,...n.

1 1 _ 1 M = 13— _
k!((n—k+1)! (n—k+2)!)s‘P[Cl H-R2 H(‘
« 1
k!(n-k+1)!

It follows that

2n+1 n 2n+1 -1

(n+1)!ﬁ5;"3[q") =H-RZ=K< D! 1.11)
Since

— e’ 1 1 1
Aa>1= (n+1)!(1+ n+2+ (n+2)(n+ 3)+"')< (n+ 1)!'

We see from (1.11) that the total variation
distance between the distribution(C™) of

C" and the distributiorL.(Z,) of Z,

151

PT,.(2) = 1
M {1—5(1+ Eo)} )
P[TOn( Z) = r]

= % exp{z [log(1+i~'ad )-i~'ed

izl

)

{irormig,,, M} @2
and
P[TOn( Z) = r]

= % exp{z [log(1+i~*6d )-i~'ed

izl

)

d1+o(ig,,, (M} @3
Where ¢{'112'7}(n) refers to the quantity derived
from Z It thus follows that

P[A(C™)]0 Ki®™® for a constantK ,
depending onZ and ther, and computable
explicitly from (1.1) — (1.3), if Condition§A,)

and (B,,) are satisfied and ifiD:O(i'g‘) from
someg >0, since, under these circumstances,
both n‘1¢{'112’7}(n) and n‘1¢{11217}(n) tend to zero

as n - oo, In particular, for polynomials and
square free polynomials, the relatiegror in
this asymptotic approximation is of ordet" if
g >1.

ForO<b<n/8 andn=n, with n,
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dr, (L(CIL, bl), L(41, 1))

<d,, (L(CIL b), U ZL )

< &,,(n.D),

Where &4 (n,b)=O(b/ n under Conditions
(A).(D) and(B,,) Since, by the Conditioning
Relation,

L(CIL B[ T,y (O = )= L(ZL H[ F,(2= ).

It follows by direct calculation that

dy, (L(CIL, B), L(Z1, )
=dp, (L(T5,(C)), (T,( D))
—maxz P[T,, (Z)=r]

{1— } (1.4)

PlTpn(2) = n— 1§
PT.(29 =1

Suppressing the argume#tfrom now on, we

thus obtain

dry (L(CIL b)), L(ZL, 1))
=3 PIT,, = 1] {1 il

_ n=N=1]
r=0 T, =1 .
<Y AT =S

PlTy, =1
P[Tep =11

x{ip[nb:a(m: B PJ= ﬁ]%

(2]

<ZP[TOb_r]+z H T =1

r>n/2
& =n-§-RPL=n1
P[T,, =
“ 2Pl =S PIT,, = 1
[n/2]
+ZP[TOb—r] z HT=3%PT=n1¢ [PIT=]r
s[n2}+1
The first sum is at mo=In™ET, ;the third is
bound by

(max P, = s))/ H, = 1

n/2<s<
- 25{10.5(1} (n/2,b) 3n
B 6P[0,1]’

n

Pl
2]
r>n/2 r=0

{ F)[1Ln
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3 5 [n/2]
6P,[0, 1]4n #ioq(n)z AT = "]Z BT =

Sl 10§ (n) ETo
6rR,[0,1] n

Mr-#

Hence we may take

— ol 64150-5} (n)
5{7'7}(n, b) =2n E'[MZ){HM} F
+$ %10.5(1}(n/2’b) 1.5)

Required order under Conditiof#y), (D,) and
(B, if S(e0) <o. g (n) can be
replaced byg, ., (

the required order, without the restriction on the
r. implied by S(c)<oc . Examining the
Conditions (Ay),(D,) and (B), it is perhaps
surprising to find tha(B,,) is required instead
of just (B,,); that is, that we should need
D..,1& =0(™) to hold for someg >1. A

first observation is that a similar problem arises
with the rate of decay of,; as well. For this

If not,

|n the above, which has

0
reason,n, is replaced byn: . This makes it

possible to replace conditiofA) by the
weaker pair of condition¢A)) and (D,) in the
eventual assumptions needed &, (n,b) to
be of orderO(b/ n); the decay rate requirement

of orderi™” is shifted frome, itself to its first

difference. This is needed to obtain the right
approximation error for the random mappings
example. However, since all the classical
applications make far more stringent

assumptions about the,,| =2, than are made
in (B,,). The critical point of the proof is seen
where the initial estimate of the difference
P =94- R T" = s The factor
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€019 (M), which should be small, contains a far Where &, ,(n,b)=O(n*fj n* br %)) for

0 ae
tail element fromn, of the formgf (n)+u’(r), ~ @y 9>0 under Conditions (A),(D,) and

which is only small ifa, >1, being otherwise of (By,), with S, . The proof uses sharper

order O(1™**%) for any 5> 0, sincea, >1 is in estimates. As belgore, we begin with the formula

0
any case assumed. Fee n/2, this gives rise  Grv(L(C[L b)), L(41, 1))
to a contribution of order o(n ") in the =S PIT,, = {1 PlT,,=n-1
estimate of the difference =0 P[T,, =1 |,
PT,=9- R T,= 1], which, in the Now we observe that
remainder of the proof, is translated into a _ PT,=n-1] YWQHT, =1
contribution of ordetO(tn™**°) for differences Z; PlTo, = 1141~ PT,=1 | rZ; BT.=h
of the form P[T,=9- P T,= s], finally
leading to a contribution of orddmn **° for any
d>0 in &;,,(n,b). Some improvement would

n

Y2 Pllp=9(RT,=mb- Pf= rlr

s 2]+

<4n”ETy+(max P[T, = §)/ RT,= b
+P[T0b>n/2]

seem to be possible, defining the functigrby
g(V\b:J{W:S} —J{W:ﬂ, differences that are of

ooy o5y (12,D)

the form P[T,=9-RT,= ]t can be =81 El,+ T epoa 1.2)
directly estimated, at a cost of only a single e have
contribution of the formgf (n)+u(n). Then, P[T,, = r]
iterating the cycle, in which one estimate of a| Z/Z:] PT,, =
difference in point probabilities is improved to = =
an estimate of smaller order, a bound of the
form &

X P[T, = =nr k- = h
4= e 0 b v o <(E TR HRT R PIe g
any 0 >0 could perhaps be attained, leading to (@ (s-1N(1-06) _
a final error estimate in orde©(br* + ri%*) Z PlTo, = 9 R =0 |

for any 6>0, to replaces, , (n,b). This would

be of the ideal orde©(b/ n)for large enough
b, but would still be coarser for smdill “n |3['|;)n =

ZP[TOb-r]ZP[TOb—isI f

r=0 s=0

x {5{10.14(n, b)+2(rOs)|1-6| n‘l{ KO+ 4fyo (n}}

With b and n as in the previous section, we - 6

wish to show that = onP0.1] ETon&(10.4 (N D)
c(LCRL 0. UL ) -5 16 BT~ BT g g e { Ko+ 4, ()
< 5 (D) 5
1.2
(ean,[o,l]) } 4.2)
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The approximation in (1.2) is further simplified
by noting that

(2] {[i} AT, = 3 (s—n@1-6)

n+1

i

2 PlTy =11

r=0

B _q(s—n@d-o)
{SZ:;P[T% 1

2 s-ni-4
<Sem, =1 Y AT, =500
r=0 s>[n/2] n+1

<P-GnE(M,Y T, > n/3)< J1-6 n* ET a3

and then by observing that

_ _a(s—nN@-6)
r){;Z]P[Tob—r]{éF{Tob—$n+l }

<n1-6(ET, AT, > 2]+ E Y T,> n3))

<41-GnET, 1.4

Combining the contributions of (1.2) —(1.3), we
thus find tha

| dyy (L(CIL b, U Z1, 1)
(1Y PIT, = r]{z AT, = ¥ & xl—eo} |
{‘5{10.5(2} (n/ 2, b) +2n" E-Ebé‘{ 10.1 ( n t%

r=0 s20
241-6¢04 0)
6P,[0,1]

<€,4(nb)
-3
6pr,[0,1]

+2n2ET,; {4+ 31-6|+ 1.5
The quantity£{7_8} (n,b) is seen to be of the order
claimed under Condition&A)),(D,) and (B,,),

provided that S(e) <oco; this supplementary
condition can be removed ifg,,,(n) is

replaced byg;, ,; (n)
£r8 (n,b), has the required order without the

in the definition of

restriction on ther, implied by assuming that

154

S(e0) < 0. Finally, a direct calculation now
shows that

z P[T, =1
r=0

Example 1.0. Consider the point
0=(0,...,000". For an arbitrary vector, the

coordinates of the point=0O+r are equal to
the respective coordinates of the vector
r:x=(x,..x") andr =(x*,...,x"). The vector r
such as in the example is called the position
vector or the radius vector of the poixt (Or,

in greater detailr is the radius-vector ok
w.rt an origin O). Points are frequently
specified by their radius-vectors. This
presupposes the choice of O as the “standard
origin”. Let us summarize. We have
considered]" and interpreted its elements in
two ways: as points and as vectors. Hence we
may say that we leading with the two copies of
0": 0"={points}, [1"={vectors}

Operations with vectors: multiplication by a
number, addition. Operations with points and
vectors: adding a vector to a point (giving a
point), subtracting two points (giving a vector).
0" treated in this way is called am-
dimensional affine spacéAn “abstract” affine
space is a pair of sets , the set of points and the
set of vectors so that the operations as above are
defined axiomatically). Notice that vectors in an
affine space are also known as “free vectors”.
Intuitively, they are not fixed at points and
“float freely” in space. Froml "considered as
an affine space we can precede in two opposite

directions:[] " as an Euclidean space [1"as

an affine space= [J"as a manifold.Going to
the left means introducing some extra structure
which will make the geometry richer. Going to
the right means forgetting about part of the
affine structure; going further in this direction
will lead us to the so-called “smooth (or

IJESPR
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differentiable) manifolds”. The theory of (4) does not exceed 1 by the absolute value.
differential forms does not require any extra This follows from the inequality
geometry. So our natural direction is to the (a b)2s|af|t}2 (5)
right. The Euclidean structure, however, is K ’ the Cauchv—B kovskv—Sch
useful for examples and applications. So let us<'oWN as the Lauchy-bunyakovsky—schwarz

e inequality (various combinations of these three
say a few words about it: R

names are applied in different books). One of

the ways of proving (5) is to consider the scalar

considered as an affine space we can already dol1are of the linear comblna.tlcaﬁ-tb, wherg

a good deal of geometry. For example, we cant R - As  (a+tba+t)=20 is a quadratic
consider lines and planes, and quadric surfacegolynomial int which is never negative, its
like an ellipsoid. However, we cannot discuss discriminant must be less or equal zero. Writing
such things as “lengths”, “angles” or “areas” this explicitly yields (5). The triangle inequality
and “volumes”. To be able to do so, we have tofor distances also follows from the inequality
introduce some more definitions, makinga (5

Euclidean space. Namely, we define the length _

of a vectora=(a,...,d') to be Example 1.1. Consider the functiorf (x) = X

|aj:=\/(a1)2+...+(d‘)2 1) (the i-th coordinate). The linear functiciX

! ) the differential ofx' ) applied to an arbitrar
After that we can also define distances between( . i h)i PP y
points as follows: vector h is simply h' .From these examples

— follows that we can rewritelf as
d(A B) ::| AE* )

of of
One can check that the distance so defined df zﬁd%t”’ﬁd)@’ @
possesses natural_properties that we expect: is {hich is the standard form. Once again: the
always non-negative and equals zero only foryaig| derivatives in (1) are just the coefficient

coinciding points; the distance from A to B is . ) .
the same as that from B to A (symmetry); also,(dep?nd'ng_ .on X ) dx, dxz are Ilngar
for three points, A, B and C, we have functions giving on an arbitrary vectdr its

d(AB<dAQ+dCB (the “triangle coordinatesh’,h?,..., respectively. Hence
inequality”). To define angles, we first introduce

Remark 1.0. Euclidean geometry. In 0"

the scalar product of two vectors of
df (x)(h)=9,,,,=-— h+
(ab)y=adb+.+dB (3) SUS AL oxt
Thus|a|=4/(a, @ . The scalar product is also Lo N, ()
denote by dotab=(a b, and hence is often ox
referred to r:\s the “ddOtf'prO"[jI’l]JCt" . INot\;v,t for Theorem 17, Suppose we have a
nonzero vectors, we define the angle eweer|oarametrized curvd — x(t) passing through
them by the equality ) _
(a,b) \ X 00" at t=t, and with the velocity vector
cosq =+—— 4
lal|n 4 X(t,) =v Then
The angle itself is defined up to an df(X(V) .\ \_5 (=g 1
integral multiple of277 . For this definition to dt () =9, (%) (%)) M

be consistent we have to ensure that the r.h.s. of
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Proof. Indeed, consider a small increment of d

the parametet:t,—t,+At, Where At 0. d(fg)%)() :a( O X))

On the other hand, we have att=t, Formulae (1) and (2) then immediately

f(x+h) = f(x)=df(x)(D+B(H| F for an  follow from the corresponding formulae for the

arbitrary vectoh, where 8(h) — 0 whenh - 0O usual derivative Now, almost without change

. Combining it together, for the increment of .the thepry generalizes to functl.ons taklng values

f(x(t)) we obtain in ™ instead of ! . The only difference is that

f(X(t, +At) = f(x) now the Qifferenti-al of a map ‘U - [ ™at a
point x will be a linear function taking vectors

=dfOo)(U At a(Anhy in 1" to vectors in] "(instead of] ) . For an
+B(UA +a (At)A).Judt +a (At)AL| arbitrary vectorh[]0 ",
=df (x,)(0).At+ y(AtAL

F(x+h) = F(X9+dH3(h
For a certainy(At) such thaty(At) — Owhen +B(h)|h (3)
At - 0 (we used the linearity ofif(x)). By  Where 8(h) =0 when h- 0. We have
the definition, this means that the derivative of gk = (gF, ... .dF") and
f(x(t) at t=t, is exactlydf(x)©) . The oF =
statement of the theorem can be expressed by a dF =l dx Tt dx
simple formula:

oF' OoF*'
df (x() _ af of o o
— = =X+ +—X 2
dt  ox X @ ox ox | dX
=l 4
To calculate the value Qif at a pointx, on a OF™ 9F™ || dX
given vectorv one can take an arbitrary curve axt T ax

passing Througlx, att, with v as the velocity

vector att,and calculate the usual derivative of In this matrix notation we have to write vectors
as vector-columns.
f(x(t) att=t,.

Theorem 1.9 For an arbitrary parametrized

Theorem 1.8. For functions f,g:U =L ,  curve x(t) in 1", the differential of a  map
uoo, F:U - 0™ (whereU O0") maps the velocity
d(f+g)=df+dg @) vector X(t) to the velocity vector of the curve
d( fg) = df.g+ f.dg (2) F(x(t)) in0™:
dF(x(t) _ :
Proof. Consider an arbitrary poing and an dt = dF(X(D)(X(D) @
arbitrary vectorv stretching from it. Let a curve
x(t) be such thak(t,) = x, and x(t,) =v. Proof. By the definition of the velocity vector,
d = ;
Henced( f + g)(%)(©) :a( FO(D)+ g X)) X(t+At) = x() + X)) At+a(ADAt (2)
att=t, and
IJESPR
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Where a(At) - 0 when At - 0 . By the N : .
definition of the differential, d(GoR)(¥ = dQ dR ¥ for an arbitrary vector

F(x+h=F)+dR(H+B(h h  (3) X .

Where S(h) - 0 whenh - 0. we obtain ]
Corollary 1.0. If we denote coordinates in"

F(x(t+A) = F(x+ X)At+a(AhAY by (x,...X') and in0™by (y'...y"), and
h write
= F(x)+dF()(X A t+a(A DA+ dF = axldx1+ +§; d¥ )
X(Y) At + a(AD)AL). [ x(DAL+a (ADA
AL (808, XD+ a (a0AY - Loy @
= F () +dF(Q( X YA t+ p(A YA Then the chain rule can be expressed as follows:
_9G ., 3G
For some y(At) ~ 0 when At — 0 . This d(GOF)_ayl e Ty I ©

: s . WheredF' are taken from (1). In other words,
precisely means thalf(x) X9 is the velocity to getd(GoF) we have to substitute into (2) the

vector of F(X). As every vector attached to a . .
9 Y expression fody = dF from (3). This can also

point can be viewed as the velocity vector of : . _
some curve passing through this point, thisPe expressed by the following matrix formula:

theorem gives a clear geometric pictured®f
as a linear map on vectors.

Theorem 1.10 Suppose we have two maps aon=| . .ol
F:U -V and G:V - W, where ac® ac | aF™ gE™
uoo"voo™woo® (open domains). Let oy Tay" )L ax Tox

F:x— y=F(X. Then the differential of the _ _
composite map GoF:U - W is the e., if dG and dF are expressed by matrices of

composition of the differentials & andG : partial derivatives, therd(GoF) is expressed

d(GoF)(X = dX Y odFE X (4) by the product of these matrices. This is often
written as

. (4
dx’

Proof. = We can use the description of the
differential .Consider a curve(t) in " with

the velocity vectorx . Basically, we need to
know to which vector in [ it is taken by
d(GoF). the curve(GoF)(Xt) = G(H X )). By
the same theorem, it equals the image umnid®r
of the Anycast Flow vector to the curfx(t))

in 0 ™. Applying the theorem once again, we
see that the velocity vector to the culvéx(t))

is the image undedF of the vectorx(t) . Hence

IJESPR
www.ijesonline.com

157



International Journal of Engineering Sciences Paraiyms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

o7 97 (92 97

— e - Example 1.2. Consider a curve inl?
1 ) 0
oxox’ B y y' specified in polar coordinates as
...... - X(t)l’:r(t),¢:¢(t) (1)

0z° 07° 07 07 We can simply use the chain rule. The map

oax" ox’ ay ay" t — Xx(t) can be considered as the composition

oyt oy of the maps t (r(t), o)), ,.9)—>x({.9).

VW Then, by the chain rule, we have

é“m a m ’ dt ordt o0¢ dt or 0¢

y y . :

Ryl Herer and ¢ are scalar coefficients depending
Or on t , whence the partial derivatives
07" &I oZ dy () a%r ’0%¢ are vectors depending on point in
o oy 0¥’

L 12, We can compare this with the formula in
Where it is assumed that the dependence of

yOO ™ on xO0 " is given by the mag , the the “standard” coordinates:x=¢g x g y .
dependence ozO0 P on yO[™ is given by Consider the vectors a%r,a%¢. Explicitly
the mapG, and the dependence of(JJ"on  we have
x[0 "is given by the compositioGoF . % = (cOSd . Si 3

o (C0sp.sig ) ©)

Definition 1.6. Consider an open domain
U O0". Consider also another copy of",

denoted for distinctiori! |, with the standard From where it follows that these vectors make a

n he open domait) s gven by & map [-0). 12 I o skech @ pere
F:V - U, whereV O[] is an open domain

starting from that point. Notice that
of 0", such that the following three conditions 0 0 i i
y 9 or % P are, respectively, the velocity

are satisfied :
(1) E is smooth: vectors for the curves r—Xx(r,¢9)

) F is invertible; (¢ =¢, fixed) and ¢ x(r,@) (r =r, fixed) .
@) F1:U -V isalso smooth We can conclude that for an arbitrary curve
' given in polar coordinates the velocity vector

ox _, . :
ﬁ—( rsing,r cosp ) 4

The coordinates of a poikJU in this system  will have componentsr,@) if as a basis we

are the standard coordinatesff (x) 00 " —0 —0 )

In other words, y take = %r o %¢-

F:(yh, Y ) x= x(¥..., V) @ X=€ r+ g ¢ (5)

Here the variablegy'...,y") are the “new” A characteristic feature of the bags g, is that
coordinates of the poirt it is not “constant” but depends on point.
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Vectors “stuck to points” when we consider A=-ydx+ xdy In the polar coordinates we
curvilinear coordinates. will have x=rcosg ,y =r sinp, hence

Proposition 1.3. The velocity vector has the dx=cospdr=r sinpdg

same appearance in all coordinate systems. ~ dy =singdr+ rcospdg

Proof. Follows directly from the chain rule Substituting intoA, we get
and the transformation law for the basisin ~ A=-rsing(cogpdr—r sigdg
particular, the elements of the basis- 6>/ i *rcosp (singdr +r cogdg )

—r2(cin2 —

(originally, a formal notation) can be understood =r¥(sin®g+ cosg g =rdg

directly as the velocity vectors of the coordinate Hence A= r’dg is the formula forA in the
lines X > x(X,...,X) (all coordinates buk polar coordinates. In particular, we see that this
are fixed). Since we now know how to handle is again a 1-form, a linear combination of the

velocities in arbitrary coordinates, the best waydifferentials of coordinates with functions as
to treat the differential of a mag:0" — 0™ is coefficients. Secondly, in a more conceptual

by its action on the velocity vectors. By \;V%’e\;vreﬂfr?;igﬁf:)nfvaecltggrgt'Qvirdorgiﬂ;gf
definition, we set yp

“dx(y . dF(X) WAO)= QU+t U, @
dF(Xo)'—(tO)'_)—(tO) @) If v=> gu', whereg —6 . Recall that the

Now dF(Xo) is a linear map that takes vectors ifterentials of functions were defined as linear
attached to a poink, 00 " to vectors attached functions on vectors (at every point), and

to the pointF(X)DD m dX (e) = dx(;;() J, (2) at every
6F
dF —&dx1 W dx point X.
a_':la_':l 2 Theorem 1.9. For arbitrary 1-formw and
ox-ox' | d path y, the integralj'a) does not change if we
(e, ) v e S (2 Y
AE™ Q9EM™ || dX" change parametrization ofy provide the
T ax orientation remains the same.

In particular, for the differential of a function pygof: Consider <w(x(t)),d—),(> and
we always have dt

of of .
df = 5 dbd .t 3) <a)(x(t(t ))),d—’.‘> As

Where X' are arbitrary coordinates. The form of
the differential does not change when we <60(X(t(t))) > ‘<CU( X(t(1))), >
perform a change of coordinates.

dt
dt’

Example 1.3 Consider a 1-form inl ? given
in the standard coordinates: . :
Let p be a rational prime and lé€ =1 ().

We write ¢ for ¢ or this section. Recall that
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K has degre@(p) = p—1 overd. We wish to
show thatO, =0 [{]. Note that{ is a root of

(1-4)O n =M1 write

1=a(1-4)

Thus we can

xP -1, and thus is an algebraic integer; sinceor someaJO;. Thatis,1-¢ is a unit inQ,.

Oy is a ring we have that[{] 0 O,. We give
a proof without assuming unique factorization

COROLLARY 1.1 For any allQ,,

of ideals. We begin with some norm and trace Tf,, (1-¢)a)0 pLl

computations. Letj be an integer. Ifj is not
divisible by p, then’ is a primitive p" root

of unity, and thus its conjugates are
,7%,...0"" . Therefore

T, (¢ =+ 440" =0 ({)-1=-1

If p does dividej, then{’ =1, so it has only
the one conjugate 1, andr,, ({')=p-1By

linearity of the trace, we find that

The @=¢)=Tr,, 1-¢%)= ...

=Tr,. @-¢"")=p

We also need to compute the norniefl . For

this, we use the factorization
XPL+XP2 4 +1= (X)

= (X={)(Xx= %) (x=¢");
Plugging inx =1 shows that
p=(1-{)A-¢?)..=")
Since the(1-¢') are the conjugates ¢f-¢),
this shows thatN,,. (1-¢)= p The key result
for determining the ring of integeS, is the
following.

LEMMA 1.9

1-4)O nll = pJ
Proof. We saw above thap is a multiple of
@-97) in O, so the inclusion
A-¢)O, n0 O p! is immediate. Suppose
now that the inclusion is strict. Since
(1-¢)O, nlis an ideal of] containing p’J
and p is a maximal ideal ofl , we must have

160

PROOF. We have

The (A-0)a) =0,(A-{)a)+ .+ 0, (- W)
=0,1-{)0,(@)+ .+ 0, ,(1-{ ), , @)
=(1-Q)a @)+t -7, @)

Where theo; are the complex embeddings of

K (which we are really viewing as
automorphisms oK) with the usual ordering.

Furthermorel-¢" is a multiple ofL—¢ in O
for every j #0. Thus

Tr,. (@(1-{))0@1-{)O, Since the trace is
also a rational integer.

PROPOSITION 1.4 Lep be a prime number

and letK =|0 ({,) be thep" cyclotomic field.

Then

O =U[{,1 DO/ (@ 3);

1¢,,...{ )% is an integral basis fod, .

PROOF. Let alO, and write

a=a,+al +..+a_"? With g O0. Then
a(-{)=a,1-{)+a( -{*)+...
+a,,(("7 =)

By the linearity of the trace and our above

calculations we find thatTr,, (a(1-{)) = pa,

We also have
Tr, (@(1-¢))0pJ,so a,00 Next consider

the algebraic integer
(@-a){ ' =a+al+..+3_ £ This is an
algebraic integer sinc€ ' ="' is. The same

Thus
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argument as above shows that(Jl], and map is also surjection, since the residue class of
continuing in this way we find that all of tree 97800k, (with G, and gUp) is the

are inlJ . This completes the proof. image of B in O/p» Which makes sense
since S is invertible inQ,, . Thus the map is

.. . _ an isomorphism. In particular, it is now
U (s is simply the subring of] of rational  4pndantly clear that every non-zero prime ideal
numbers with denominator relatively prime to of O, Jis maximal. To show thaD,  is a

p. Note that this ring [ ) is not the rind’ ,0f  pedekind domain, it remains to show that it is
p -adic integers; to get! jone must complete integrally closed inK. So letyOK be a root of

O, The usefulness o®, , comes from the a polynomial with coefficients inO, ; write

fact that it has a partlcule_lrly simple ideal this polynomial as Xm+a'm_l xm+...+ﬂ
structure. Letabe any proper ideal dd, , and )

consider the ideain Q, of O,. We claim that With o, 0Q, and 40O ,.  Set
a=(an Q)Q.,; Thatis, tha@ is generated pB=44..4 .. Multiplying by A" we find
by the elements oft in an Q. It is clear from that Sy is the root of a monic polynomial with
the definition of an ideal tha [ (an Q) Q . coefficients inO,. Thus ByUQ,; since S0 p,

To prove the other inclusion, ler be any we have Byl B=y00,, . Thus O, is
element ofa. Then we can writeo =3/ y integrally close inK.

where SO, and yOp. In particular, B0a
(since B/ yUa anda is an ideal), s3I0,
and yOp. so BOan Q. Since 1/y00, ,,
this implies thata=g/y0O(an O)Q, ,, as

claimed.We can use this fact to determine all of
the ideals ofQ, . Let a be any ideal oo, |

Example 1.4 LeK =0 , then the local ring

COROLLARY 1.2. LetK be a number field
of degreen and let @ be in O, then
Ny, (@0y) =‘ Ny (0’)‘

PROOF. We assume a bit more Galois theory
than usual for this proof. Assume first that
K/O is Galois. Letog be an element of
and consider the ideal factorization @h G in Gal(K /00). It is clear that

O. write it asan O, = p'b For somen and o(0,)/ o(a) OQ,,,; since g(O,)=0Q,, this
some idealb, relatively prime top. we claim  ghows  that N, (0(a)0) = N, (@ Q)
first thatbQ, , = Q ,- We now find that Taking the product over alr 0Gal(K /[ ), we
a=(anQ)Q,=PbQ,= BQ, Since pae N, (N, (@)Q)=N,(@Q)" Since
bQ, ;. Thus every ideal oD, has the form (4) is a rational integer an@, is a free!
p"Oy , for somen; it follows immediately that  -module of rankn,

Oy , Is noetherian. It is also now clear that O/ N, (@)Q, Wil have orderN,, (a)";
p"Oy , is the unique non-zero prime ideal in therefore

O, Furthermore,  the inclusion Ny (N (@) Q) = N, (@ Q)"

O = O,/ pQ, Since pO, , n O, = p this
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This completes the proof. In the general case,

let L be the Galois closure oK and set

. T
[L:KI=m Wi =( wif wff? . -us'E-if{M)

: . . 1=1,2,...K.
3. Adaptive Clustering Self Organized Map

The data segmentation can be cast as a constrain\ﬁ’herem represents the number of reduced feature as
satisfaction problem by interpreting the processrsof ~ discussed in the previous section. Every neuroalse

the assigning labels to data elements based on some . . . Wiy .
feature similarities and subject to certain spatial associated with a collection of st which hold the

constraints. This paper presents a Self-organieatiife- coordinates of contiguous data elements thail catised
map network (SOFM) for label assignment based only  neuron to be activated. Suppose that at itere "™*indata

feature similarities. The principal goal of the S®F . \ont V) represented by feature pattern
network developed by Kohonen [4] | to transform an

incoming signal of arbitrary dimension into a orretwo Y':E'E""::' is presented to the network.

dimensional discrete map, and to perform this ) ith )

transformation adaptively in a topological ordestian. ~ The input to the neuron is calculated as

Many activation patterns are presented to the métwo j 5
one at a time. Each input causes a correspondaadjzed Nl — Tz} Talied) ¥ 1
group of neuron in the output of the network tcabgve. N E'!I':' - ”Y( ) WE {"!‘-}”
To ensure region connectivity, the clustering pssceas o >
followed by a 3D connected component labeling —_ Z (yﬂz-ﬂ-ﬂ - _w(,?-ll'-ﬂ{k:‘}‘}
algorithm to generate the final regions. This paper bt 5T b

presents a novel adaptive clustering self-organieatlire J=

map that combines clustering and connected componen . . .
labeling in one network. Spatial constraints arpased | N€ competitive learning rule Winner-take —all (WTia

on the clustering algorithm so that only data elm¢natr ~ USed for updating the weights among the neurory Ol

are connected to each other are grouped together in Neuron that receives the minimum input would be
certainclass. . considered a the winner neurc’ ., as well as &l th
The network consists of K X 1 neurons, each reprasg (z,1,2) 5
one feature cluster, therefore the number of neuiien weights that lie in a neighborhocﬂf" l: ')
independent of the Data Size . Each neuron

are
. _ pulled into the direction of the input pattern. Jlgives
iy 11 = K is connected to input data elements the network learning rule

Wrgz.ywﬂ . . ‘ . . Y
£ . Each neuron is W.,Ef'y“j(kf +1) =W£f'ywj(k) 4 ?ﬁl‘-‘r(_m.y'.«](y(x-y.:]_Wif.y.~3(k:))

e
associated with a collection of se {w“!} which hold and
the coordinates of the contiguous data elements tha
caused the neuron to be activated . A data elementw(fﬁ"-f-?")(k +1)=W(f-lf-ﬁ'3(k) -I-(‘lf‘L)EfY[f'fﬂ—W(ﬁ'f'ﬂ(k)}
v(z_y_;:] ™ r* s

by a set of synaptic weigh

is added to a particular set if the data element A o]
is spatially connected to the set. df i Tl 1
YW e QR (k)

Network Topology Where?r‘; ( @ number between 0 and 1) is the learning
. rate at iteratior &
The network consist oif£ X1 neurons, each representingAs shown in fig., the topological neighborhood

one feature cluster, therefore the number of newuien (Tt 1.1
independent of the entire volume of data . Eachrareu Qr- ':-'i‘-,;' is defined as

T lﬂ 1 ﬂ f"i.'. is c?nni;trei:g_ltro#‘]input data elements Q.E'y“:j{k!} — {W-Eflflﬂ(k:} . v.:f_gﬁ_;-'j c -S'}
by a set of synaptic weigh ' ¥ ¢
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g . R Network Convergence
Where*? is a spherical volume of radi 4 centered at
(1) . . . o The energy function of the proposed Network is gva
v - The radmst: is selected fairly wide in the conyergent during the network evolution. For the
beginning and then permitted to shrink with itenat-'i‘: _ traditional unsupervised competitive learning al@;mfl.
The network minimizes an energy functi1F(W}
QEE-IM’) (j;_} given by

Topological neighborhood A d . The NN N Kk

i \ whuht .l {eha)y ok vl {Tn) :
neighborhood is a spherical volume of radi k F(WJ‘ ZZEZ Z [‘.ﬁ; Lj ”Yl: j'Wj; |

AATiE] _ _ =liEl=li=l 5=l
centered a .As mentioned earlier, each neuron
{wui} where ' ™ s the number of sets associated with
is associated with a collection of st which hold ke
the coordinate of contiguous data elements thatezhthe o, .on® anc'7 s the binary state of the w7
it
neuron to be activated. A data elem(v( ) is
added to a particular set if that data elemenpdtially A )
. . - ' TANE) Y s
connected to the set. Each neu i 1=i<K , is L_r,ﬁ: —_ 1 .Ef N n“"‘” # @-
initially associated with an empty s%%1 . Supposa th 0 otherwise
it .

data elemenv( ) activated neurT‘ which has

Taking the derivative with respect W we have

sets. We define VF [W} — _I«'Téz-yw”j};#[YI:E-yw”j _ Wﬁ(;:z.y..:j]

v(z.;r,r.:;j denoted b
y We can see that the weight updates are in thetidinecf

foa 1 <1 < e}

neighborhood constraint set «

_',!\If'(z.y.s:l

negative descent (F

pevai= (U U feieioiemny W)W -7

i=—1j=—1k=—1 {Td) 1 Ardne) i) _ o)
= W) +f U 7 - W)

Talfnis AP

A Data eIemen‘V( Ue?) is assigned to a reg Wi if o o

the following constraint is satisfied Therefore, the energy function is always non-insireg

and the network | convergent.
T ) Selecting the number of the neurons
NEBE (Y grg 7 b °

In this section, we present a quantitative method f
selecting the optimal number of neurons (Clustefsjhe
network. As shown in the previous section, the oekw

If the previous condition fails for every set

AL ) ] P e L
Wity 1 < 1< tpar, a new set,wt{nmr s L
partitions the volume:I yielding, non-overlapping,

v(z-ﬂ-v"j .
created to holi . Therefore, each set contain connected regions

only spatially connected data elements. After each
iteration, if two sets belonging to the same newomtain
neighbor data elements, these sets are mergedhénget K
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The segmentation results depend heavily on thetimte
of the number of clusters (neuron‘{i: . A criterfon
the selection process can be stated as follow:

S
The within-group scatter matrix * W , is defined bs t
sum of the group scatter matrix

L
Select the number of clustersﬁ , such that the 'S'r*r’= ZSW‘
segmentation produces a partition that maximizes th k=1

homogeneity within segmented regions and the

heterogeneity among different regions. Finally, the between-group scatter mati™ H , igroled

. . S as the scatter matrix for the group means
Scatter matrices [5] is used in discriminant anastdr group
analysis. Assume that the d-dimensional vectors Ly

i’ oo N Sn = N p—
Y= :]‘ 1= &, U2 =N, have been %5 .kgfg(m m}(m ™

separated into L regions. The patterns in kth [@rou Thus, a clustering quality measure, CQ, that maési

e the between — class scatter with respect to tia soatter
in number, are denoted by the vectors can be formulate as

T
(v v .. yw)

matrix for the &th group is given by

The scatter f -'T'IC-SH}

CQxk = W

m, (=) .
S('@ — Z""(Y‘E#) _ m(#jj(YE#) N m{#):IT. Where ( J] is the trace of the matrix. Large values

=1 ’QH suggest compact, well isolated clusters. The
(k) algorithm is performed for increasing values ofkarting
where 1L is the vector of features means for the with a small value ( for example K =2 ), and eaichet

T
m* = ( . mﬁﬂj

CQH is calculated . We select K that produces the

maximumCQH .

Adaptive Network Algorithm

The essence of the Network algorithm is that itstitites

mi ith +h
and is the mean for th feature fo”'kt] a simple geometric computation for more detailed

group properties of the Hebb — like rule and lateral riat¢ions.
Tk There are five basic steps involved in the appbcabf
1
.mé#j _ Z y':'ilﬂ. the algorithm after initialization, namely, sampgijn
Yk 1 JE similarity matching, weight updating, set assignmend

merging. These five steps are repeated until, f@lacted
number of neurons K , the map formation is complete
L m These steps are then repeated for different vabfids

T
S = Z Z(Y(@ — m}(‘{{.‘ﬂ —_ m} until a maximum value for the clustering qualityasare,
=1 7—1 7 J CQ, is reached.

where the pooled mean, m, | given by

1 L
m=—73 mm#
N ; g

The scatter matrix, S, for the pooled sample ineefas

Computational Complexity

The complexity of the adaptive network is mainly
determined by the size m of the reduced featur¢ovec
the number of clusters K, and the volume ire. FoiNaX
N X N volume, each iteration ha an order of complex
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O(mIEK N%)

we can

. Thus in order to reduce the complexity

1. Reduce the size of the input volume by sampling
in each direction to obtain an acceptable
representation that preserves the volume
properties at a higher scale.

2. Reduce the number of features by the features
selection procedure.

Adaptive
Algorithm

Clustering Self Organized map

To find the single best state sequerp€gz...qy), for
the given observation sequence @uof...or), we need to
define the quantitg(i) in below eq.

S = max  Plgyga-.q,.4, =fopop..0, | A]

1,42 iy |

&(i) is the highest score along a single path, at time
which accounts for the firstobservations and ends in
statei. By induction we have

Gt ) = max[ &, (Hag b (o,
i
bi(o+1) means. To retrieve the state sequence, we need to
keep track of the argument that maximides(j) in above
eg. for eacht andj. To store the argument, an arrgy(j)

is needed in the algorithm. The Viterbi searchsis a
follows.

1. Initialization
:_“.I-| (i) TI|"‘-I|J: )

| < i< Nistates)

iy =10
2. Recursion
S fy=max |5, (Da;lbi(o,) 2<i<Tl< <N
leisN e
W) =arg max|&, (fa, ] 2i=T12 52N
’ =i !
3. Termination

P = max [y (1]

=izl

4. Path (state sequence) backtracking

: [ ()]
G = arg max oo (r)
1 T l=ieN I

E E
gy =W qtd g ) (=T-1,7T-2..

Step 1 : Select an initial value for the number of
neurons K.

165

Step 2 : Associate each neuron with an empty set
wWin IS < A
Step 3 : Initialize the synaptic weights of thewnatk

wr oL 1< < K

= =, Y.z = N, to small, different, random
numbers at iteration k = 0

Step 4 : Draw a sampl Y[:"g';] from the input
set.

Step 5 : Find the best — matching ( winning ) nauro

I at iteration k using the minimum distance
Euclidean criterion

.\'r!f. = err{HY[‘“‘“"'] Wr-[""*"'](ﬂs)H-: [ <1< k)

Step 6 : Update the synaptic weight vectors udieg t
update formula

WO 1) = WO ) o) i)

and

)

W12 W+ (o ye) -l

] . (2..2)
Step 7 : Assign the |anV to a neurodal set :
if " has only one empty set than
(2.2 — ., R
v € W oyl :
"1 otherwise ¥ is assigned
W
to a region
satisfied

IIllll’[_:'._:.l.'-] r]u;ra!' ?E .

Uit the following constraint is

If the previous condition fails for every set
weela L <0 < e
new set,
Weefrs 41 z..2)
ALETR is created to holc¥
Step 8 : Merge Se il L << Pimar  jf they

are spatially connected

Step 9 : Increment k by 1, goto step 4 , and caetin
|;J".:',|.'.]

until the synaptic weight: i

steady — state values.

reach their
) . ( {r.}h'
Step 10 : Calculate the clustering qual
Increment K by 1, goto step 1 R

Step 11 : Select K that gives rr{ Q K

IJESPR
www.ijesonline.com



International Journal of Engineering Sciences Paraiyms and Researches, Vol. 01, Issue 01, Oct 2012

ISSN (Online): 2319-6564
www.ijesonline.com

4. Author’s affiliation

Akash Kumar Singh is working with IBM Global
Services India, Bangalore as a Technical Manager an
PhD researcher, and Computational Intelligence with
Leeds Metropolitan University, UK.

5. References

[1] A. Hyvarinen, “A fast fixed-point algorithm for
independent component analysis”, Neural computation
9(7), (1997)

[2] A. Papoulis, Probability random variables and
stochastic processedMcGraw-Hill, New York, (1984)

[3] M. Rosenblatt, Stationary sequences and random
fields’, Birkhauser, Boston, 1985

[4] T. Kohonen, “Self Organization and associative
Memory,” Springer-verlag, 1984

[5] K Fukunga “Introduction to statistical pattern
recognition,” Academic press, 1990

[6] CHICOCKI, A., and AMARI, S.-l.: ‘Adaptive blind
signal and image processing’ (Wiley & Sons, 2002)

[7]1 2 HYVA" RINEN, A., KARHUNEN, J., and OJA, E.:
‘Independent component analysis’ (John Wiley & Sons
2001)

[8] FIORI, S.: ‘A theory for learning by weight flo on
Stiefel-Grassman manifold’, Neural Comput., 2003, 1
(7), pp. 1625-1647

[9] FIORI, S.: ‘A theory for learning based on dgi
bodies dynamics’, IEEE Trans. Neural Network., 2002
13, (3), pp. 521-531

166

IJESPR
www.ijesonline.com



